【題目】如圖,海上有A、B、C三座小島,小島B在島A的正北方向,距離為121海里,小島C分別位于島B的南偏東53°方向,位于島A的北偏東27°方向,求小島B和小島C之間的距離.(參考數(shù)據(jù):sin27°≈,cos27°≈,tan27°≈,sin53°≈,cos53°≈,tan53°≈)
【答案】小島B和小島C之間的距離55海里.
【解析】
先過點C作CD⊥AB,垂足為點D,設BD=x海里,得出AD=(121-x)海里,在Rt△BCD中,根據(jù),求出CD,再根據(jù),求出BD,在Rt△BCD中,根據(jù),求出BC,從而得出答案.
解:根據(jù)題意可得,在△ABC中,AB=121海里,∠ABC=53°,∠BAC=27°,
過點C作CD⊥AB,垂足為點D.
設BD=x海里,則AD=(121-x)海里,
在Rt△BCD中,
則
CD=xtan53°≈
在Rt△ACD中,則CD=ADtan27°≈
則
解得,x=33,
即BD=33.
在Rt△BCD中,
則
答:小島B和小島C之間的距離約為55海里.
科目:初中數(shù)學 來源: 題型:
【題目】某景區(qū)內有一塊矩形油菜花田地(數(shù)據(jù)如圖示,單位:m.)現(xiàn)在其中修建一條觀花道(圖中陰影部分)供游人賞花.設改造后剩余油菜花地所占面積為ym2.
(1)求y與x的函數(shù)表達式;
(2)若改造后觀花道的面積為13m2,求x的值;
(3)若要求 0.5≤ x ≤1,求改造后剩余油菜花地所占面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,AB=2,AD=3,O為邊AD上一點,以O為圓心,OA為半徑r作⊙O,過點B作⊙O的切線BF,F為切點.
(1)如圖1,當⊙O經過點C時,求⊙O截邊BC所得弦MC的長度;
(2)如圖2,切線BF與邊AD相交于點E,當FE=FO時,求r的值;
(3)如圖3,當⊙O與邊CD相切時,切線BF與邊CD相交于點H,設△BCH、四邊形HFOD、四邊形FOAB的面積分別為S1、S2、S3,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形中,邊長為10,.順次連結菱形各邊中點,可得四邊形;順次連結四邊形各邊中點,可得四邊形;順次連結四邊形各邊中點,可得四邊形;按此規(guī)律繼續(xù)下去….則四邊形的周長是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于C點,且對稱軸為x=1,點B坐標為(﹣1,0),則下面的四個結論,其中正確的個數(shù)為( 。
①2a+b=0②4a﹣2b+c<0③ac>0④當y>0時,﹣1<x<4
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,則下列敘述正確的是( )
A. abc<0 B. -3a+c<0
C. b2-4ac≥0 D. 將該函數(shù)圖象向左平移2個單位后所得到拋物線的解析式為y=ax2+c
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在淮河的右岸邊有一高樓,左岸邊有一坡度的山坡,點與點在同一水平面上,與在同一平面內.某數(shù)學興趣小組為了測量樓的高度,在坡底處測得樓頂的仰角為,然后沿坡面上行了米到達點處,此時在處測得樓頂的仰角為,求樓的高度.(結果保留整數(shù))(參考數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某童裝店到廠家選購A、B兩種服裝.若購進A種服裝12件、B種服裝8件,需要資金1880元;若購進A種服裝9件、B種服裝10件,需要資金1810元.
(1)求A、B兩種服裝的進價分別為多少元?
(2)銷售一件A服裝可獲利18元,銷售一件B服裝可獲利30元.根據(jù)市場需求,服裝店決定:購進A種服裝的數(shù)量要比購進B種服裝的數(shù)量的2倍還多4件,且A種服裝購進數(shù)量不超過28件,并使這批服裝全部銷售完畢后的總獲利不少于699元.設購進B種服裝x件,那么:
①請寫出A、B兩種服裝全部銷售完畢后的總獲利y元與x件之間的函數(shù)關系式;
②請問該服裝店有幾種滿足條件的進貨方案?哪種方案獲利最多?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com