【題目】如圖,在△ABC中,∠ACB90°,過點(diǎn)CCDABD,∠A30°,BD1,則AB的值是( 。.

A.1B.2C.3D.4

【答案】D

【解析】

在直角三角形ABC中,由∠A的度數(shù)求出∠B的度數(shù),在直角三角形BCD中,可得出∠BCD度數(shù)為30°,根據(jù)直角三角形中,30°所對的直角邊等于斜邊的一半,得到BC=2BD,由BD的長求出BC的長,在直角三角形ABC中,同理得到AB=2BC,由BC的長即可求出AB的長.

∵△ABC中,∠ACB=90°,∠A=30°,
∴∠B=60°,又CDAB,
∴∠BCD=30°,
RtBCD中,∠BCD=30°BD=1,
可得BC=2BD=2,
RtABC中,∠A=30°,BC=2,
AB=2BC=4
故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將兩塊直角三角形的一條直角邊重合疊放,已知AC=BC=+1,D=60°,則兩條斜邊的交點(diǎn)E到直角邊BC的距離是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AC,EB=EC,AE的延長線交BCD,則圖中全等的三角形共有_____對.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解“陽光體育”活動(dòng)的開展情況,從全校2000名學(xué)生中,隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查(每名學(xué)生只能填寫一項(xiàng)自己喜歡的活動(dòng)項(xiàng)目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息,解答下列問題:

(1)被調(diào)查的學(xué)生共有   人,并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)在扇形統(tǒng)計(jì)圖中,m= ,n=   ,表示區(qū)域C的圓心角為  度;

(3)全校學(xué)生中喜歡籃球的人數(shù)大約有 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織優(yōu)質(zhì)課大賽活動(dòng),經(jīng)過評比有兩名男教師和兩名女教師獲得一等獎(jiǎng),學(xué)校將從這四名教師中隨機(jī)挑選兩位教師參加市教育局組織的決賽,挑選的兩位教師恰好是一男一女的概率為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)F,過點(diǎn)FDEBCAB于點(diǎn)D,交AC于點(diǎn)E,那么下列結(jié)論,BDF是等腰三角形;DEBD+CE;若∠A50°,∠BFC105°;BFCF.其中正確的有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)將線段分成兩部分,如果,那么稱點(diǎn)為線段的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到黃金分割線,類似地給出黃金分割線的定義:直線將一個(gè)面積為的圖形分成兩部分,這兩部分的面積分別為,,如果,那么稱直線為該圖形的黃金分割線.

問題探究:

(1)研究小組猜想:在中,若點(diǎn)上的黃金分割點(diǎn),如圖,則直線的黃金分割線,你認(rèn)為呢?為什么?

(2)研究小組在進(jìn)一步探究中發(fā)現(xiàn):過點(diǎn)任作一條直線交于點(diǎn),再過點(diǎn)作直線,交于點(diǎn),連接如圖,則直線也是的黃金分割線,請你說明理由.

(3)如圖,點(diǎn)是平行四邊形的邊的黃金分割點(diǎn),過點(diǎn),交于點(diǎn),顯然直線是平行四邊形的黃金分割線,請你畫一條平行四邊形的黃金分割線,使它不經(jīng)過四邊形各邊黃金分割點(diǎn).

(4)如圖等腰梯形,請你畫出它的一條黃金分割線,使它不經(jīng)過各邊的黃金分割點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在RtABC中,ACB=90°,BE平分ABC,D是邊AB上一點(diǎn),以BD為直徑的O經(jīng)過點(diǎn)E,且交BC于點(diǎn)F.

(1)求證:AC是O的切線;

(2)若BF=6,O的半徑為5,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小蕓設(shè)計(jì)的作三角形一邊上的中線的尺規(guī)作圖過程.

已知:ABC

求作:BC邊上的中線AD

作法:

1)分別以點(diǎn)BC為圓心,ACAB長為半徑畫弧,

兩弧相交于P點(diǎn);

2)作直線AP,APBC交于D點(diǎn).

線段AD就是所求作的BC邊上的中線.

根據(jù)小蕓設(shè)計(jì)的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明:

證明:連接BPCP,

AB=CP,AC=______,

四邊形ABPC是平行四邊形,(______)(填推理的依據(jù))

BD=DC,(______)(填推理的依據(jù))

即線段ADBC邊上的中線.

查看答案和解析>>

同步練習(xí)冊答案