【題目】如圖,已知矩形ABCD中,AB=4,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AD方向以每秒1個(gè)單位的速度運(yùn)動(dòng),連接BP,作點(diǎn)A關(guān)于直線BP的對(duì)稱(chēng)點(diǎn)E,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)若AD=6,P僅在邊AD運(yùn)動(dòng),求當(dāng)P,E,C三點(diǎn)在同一直線上時(shí)對(duì)應(yīng)的t的值.
(2)在動(dòng)點(diǎn)P在射線AD上運(yùn)動(dòng)的過(guò)程中,求使點(diǎn)E到直線BC的距離等于3時(shí)對(duì)應(yīng)的t的值.
【答案】(1)t=(6﹣2)s時(shí),P、E、C共線;(2)或4.
【解析】
(1)設(shè)AP=t,則PD=6﹣t,由點(diǎn)A、E關(guān)于直線BP對(duì)稱(chēng),得出∠APB=∠BPE,由平行線的性質(zhì)得出∠APB=∠PBC,得出∠BPC=∠PBC,在Rt△CDP中,由勾股定理得出方程,解方程即可得出結(jié)果;
(2)①當(dāng)點(diǎn)E在BC的上方,點(diǎn)E到BC的距離為3,作EM⊥BC于M,延長(zhǎng)ME交AD于N,連接PE、BE,則EM=3,EN=1,BE=AB=4,四邊形ABMN是矩形,AN=BM=,證出△BME∽△ENP,得出,求出NP=,即可得出結(jié)果;
②當(dāng)點(diǎn)E在BC的下方,點(diǎn)E到BC的距離為3,作EH⊥AB的延長(zhǎng)線于H,則BH=3,BE=AB=4,AH=AB+BH=7,HE=,證得△AHE∽△PAB,得出,即可得出結(jié)果.
解:(1)設(shè)AP=t,則PD=6﹣t,如圖1所示:
∵點(diǎn)A、E關(guān)于直線BP對(duì)稱(chēng),
∴∠APB=∠BPE,
∵AD∥BC,
∴∠APB=∠PBC,
∵P、E、C共線,
∴∠BPC=∠PBC,
∴CP=BC=AD=6,
在Rt△CDP中,CD2+DP2=PC2,
即:42+(6﹣t)2=62,
解得:t=6﹣或6+(不合題意舍去),
∴t=(6﹣)s時(shí),P、E、C共線;
(2)①當(dāng)點(diǎn)E在BC的上方,點(diǎn)E到BC的距離為3,作EM⊥BC于M,延長(zhǎng)ME交AD于N,連接PE、BE,如圖2所示:
則EM=3,EN=1,BE=AB=4,四邊形ABMN是矩形,
在Rt△EBM中,AN=BM=,
∵點(diǎn)A、E關(guān)于直線BP對(duì)稱(chēng),
∴∠PEB=∠PAB=90°,
∵∠ENP=∠EMB=∠PEB=90°,
∴∠PEN=∠EBM,
∴△BME∽△ENP,
∴,即,
∴NP=,
∴t=AP=AN﹣NP=;
②當(dāng)點(diǎn)E在BC的下方,點(diǎn)E到BC的距離為3,作EH⊥AB的延長(zhǎng)線于H,如圖3所示:
則BH=3,BE=AB=4,AH=AB+BH=7,
在Rt△BHE中,HE=,
∵∠PAB=∠BHE=90°,AE⊥BP,
∴∠APB+∠EAP=∠HAE+∠EAP=90°,
∴∠HAE=∠APB,
∴△AHE∽△PAB,
∴,即,
解得:t=AP=,
綜上所述,t=或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△PQN中,若∠P=∠Q+α(0°<α≤25°),則稱(chēng)△PQN為“差角三角形”,且∠P是 ∠Q的“差角”.
(1)已知△ABC是等邊三角形,判斷△ABC是否為“差角三角形”,并說(shuō)明理由;
(2)在△ABC中,∠C=90°,50°≤∠B≤70°,判斷△ABC是否為“差角三角形”,若是,請(qǐng)寫(xiě)出所有的“差角”并說(shuō)明理由;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,從地面上的點(diǎn)A看一山坡上的電線桿PQ,測(cè)得桿頂端點(diǎn)P的仰角是45°,向前走9m到達(dá)B點(diǎn),測(cè)得桿頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°和30°.
(1)求∠BPQ的度數(shù);
(2)求該電線桿PQ的高度.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示的是一種折疊門(mén),已知門(mén)框的寬度AD=2米,兩扇門(mén)的大小相同(即AB=CD),且AB+CD=AD,現(xiàn)將右邊的門(mén)CDD1C1繞門(mén)軸DD1向外面旋轉(zhuǎn)67°(如圖2).
(1)求點(diǎn)C到AD的距離.
(2)將左邊的門(mén)ABB1A1繞門(mén)軸AA1向外面旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(如圖3),問(wèn)α為多少時(shí),點(diǎn)B,C之間的距離最短?(參考數(shù)據(jù):sin67°≈0.92,cos67°≈0.39,tan29.6°≈0.57,tan19.6°≈0.36,sin29.6°≈0.49)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AB=4,M為AB的中點(diǎn),動(dòng)點(diǎn)P到點(diǎn)M的距離是1,連接PB,線段PB繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PC,連接AC,則線段AC長(zhǎng)度的最大值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過(guò)點(diǎn)D和M,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)D,與BC的交點(diǎn)為N.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若點(diǎn)P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果三角形的兩個(gè)內(nèi)角α與β滿足2α+β=90°,那么我們稱(chēng)這樣的三角形為“準(zhǔn)互余三角形”.在Rt△ABC中,∠ACB=90°,AC=6,BC=8.點(diǎn)D是BC邊上一點(diǎn),連接AD,若△ABD是準(zhǔn)互余三角形,則BD的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某游泳池每次換水前后水的體積基本保持不變,當(dāng)該游泳池以每小時(shí)300立方米的速度放水時(shí),經(jīng)3小時(shí)能將池內(nèi)的水放完.設(shè)放水的速度為x立方米/時(shí),將池內(nèi)的水放完需y小時(shí).已知該游泳池每小時(shí)的最大放水速度為350立方米
(1)求y關(guān)于x的函數(shù)表達(dá)式.
(2)若該游泳池將放水速度控制在每小時(shí)200立方米至250立方米(含200立方米和250立方米),求放水時(shí)間y的范圍.
(3)該游泳池能否在2.5小時(shí)內(nèi)將池內(nèi)的水放完?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC≌△ABD,點(diǎn)E在邊AB上,CE∥BD,連接DE.
求證:(1)∠CEB=∠CBE;
(2)四邊形BCED是菱形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com