【題目】一個(gè)有進(jìn)水管和一個(gè)出水管的容器,每分鐘的進(jìn)水量和出水量都是常數(shù).從某時(shí)刻開始的4分鐘內(nèi)只進(jìn)水不出水,在隨后的8分鐘內(nèi)既進(jìn)水又出水.如圖表示的是容器中的水量y(升)與時(shí)間t(分鐘)的圖象.
(1)當(dāng)4≤t≤12時(shí),求y關(guān)于t的函數(shù)解析式;
(2)當(dāng)t為何值時(shí),y=27?
(3)求每分鐘進(jìn)水、出水各是多少升?
【答案】(1)y=t+15;(2)當(dāng)t為時(shí),y=27;(3)每分鐘進(jìn)水、出水分別是5升、升.
【解析】
(1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得y關(guān)于t的函數(shù)解析式
(2)將y=27代入(1)的函數(shù)解析式,即可求得相應(yīng)t的值
(3)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得每分鐘進(jìn)水、出水各是多少升
(1)當(dāng)4≤t≤12時(shí),設(shè)y關(guān)于t的函數(shù)解析式為y=kt+b,
,
解得,
∴y關(guān)于t的函數(shù)解析式為y=t+15;
(2)把y=27代入y=t+15中,
可得:t+15=27,
解得,t=,
即當(dāng)t為時(shí),y=27;
(3)由圖象知,
每分鐘的進(jìn)水量為20÷4=5(升),
設(shè)每分鐘的出水量為a升,
20+5×(12-4)-(12-4)×a=30
解得,a=,
答:每分鐘進(jìn)水、出水分別是5升、升.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)m,n是正實(shí)數(shù),且滿足m+n=mn時(shí),就稱點(diǎn)P(m,)為“完美點(diǎn)”,已知點(diǎn)A(0,5)與點(diǎn)M都在直線y=﹣x+b上,點(diǎn)B,C是“完美點(diǎn)”,且點(diǎn)B在線段AM上,若MC=,AM=4,求△MBC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D為邊CB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B重合),過D作DO⊥AB,垂足為O,點(diǎn)B′在邊AB上,且與點(diǎn)B關(guān)于直線DO對(duì)稱,連接DB′,AD.
(1)求證:△DOB∽△ACB;
(2)若AD平分∠CAB,求線段BD的長(zhǎng);
(3)當(dāng)△AB′D為等腰三角形時(shí),求線段BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)在BD上,BE=DF,
(1)求證:AE=CF;
(2)若AB=3,∠AOD=120°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD、DEFG都是正方形,連接AE、CG.
(1)求證:AE=CG;
(2)觀察圖形,猜想AE與CG之間的位置關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,在直角梯形ABCD中,∠BAD=90°,E是直線AB上一點(diǎn),過E作直線l∥BC,交直線CD于點(diǎn)F.將直線l向右平移,設(shè)平移距離BE為t(t≥0),直角梯形ABCD被直線l掃過的面積(圖中陰影部分)為S,S關(guān)于t的函數(shù)圖象如圖②所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點(diǎn)橫坐標(biāo)為4.
信息讀取
(1)梯形上底的長(zhǎng)AB= ;
(2)直角梯形ABCD的面積= ;
圖象理解
(3)寫出圖②中射線NQ表示的實(shí)際意義;
(4)當(dāng)2<t<4時(shí),求S關(guān)于t的函數(shù)關(guān)系式;
問題解決
(5)當(dāng)t為何值時(shí),直線l將直角梯形ABCD分成的兩部分面積之比為1:3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售國(guó)外、國(guó)內(nèi)兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如表所示
國(guó)外品牌 | 國(guó)內(nèi)品牌 | |
進(jìn)價(jià)(萬元/部) | 0.44 | 0.2 |
售價(jià)(萬元/部) | 0.5 | 0.25 |
該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種手機(jī)若干部,共需14.8萬元,預(yù)計(jì)全部銷售后可獲毛利潤(rùn)共2.7萬元.[毛利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷售量]
(1)該商場(chǎng)計(jì)劃購(gòu)進(jìn)國(guó)外品牌、國(guó)內(nèi)品牌兩種手機(jī)各多少部?
(2)通過市場(chǎng)調(diào)研,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少國(guó)外品牌手機(jī)的購(gòu)進(jìn)數(shù)量,增加國(guó)內(nèi)品牌手機(jī)的購(gòu)進(jìn)數(shù)量.已知國(guó)內(nèi)品牌手機(jī)增加的數(shù)量是國(guó)外品牌手機(jī)減少的數(shù)量的3倍,而且用于購(gòu)進(jìn)這兩種手機(jī)的總資金不超過15.6萬元,該商場(chǎng)應(yīng)該怎樣進(jìn)貨,使全部銷售后獲得的毛利潤(rùn)最大?并求出最大毛利潤(rùn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形 ABCD 的邊長(zhǎng)為 4,E 是 BC 的中點(diǎn),點(diǎn) P 在射線 AD 上,過點(diǎn) P 作 PF⊥AE,垂足為 F.
(1)求證:△PFA∽△ABE;
(2)當(dāng)點(diǎn) P 在射線 AD 上運(yùn)動(dòng)時(shí),設(shè) PA=x,是否存在實(shí)數(shù) x,使以 P,F(xiàn),E 為頂點(diǎn)的三角形也與△ABE
相似?若存在,求出 x 的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)“書香校園”號(hào)召,重慶一中在九年級(jí)學(xué)生中隨機(jī)抽取某班學(xué)生對(duì)2016年全年閱讀中外名著的情況進(jìn)行調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),每名學(xué)生閱讀中外名著的本數(shù),最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了如圖所示的不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)該班學(xué)生共有 名,扇形統(tǒng)計(jì)圖中閱讀中外名著本數(shù)為7本所對(duì)應(yīng)的扇形圓心角的度數(shù)是 度,并補(bǔ)全折線統(tǒng)計(jì)圖;
(2)根據(jù)調(diào)查情況,班主任決定在閱讀中外名著本數(shù)為5本和8本的學(xué)生中任選兩名學(xué)生進(jìn)行交流,請(qǐng)用樹狀圖或表格求出這兩名學(xué)生閱讀的本數(shù)均為8本的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com