【題目】如圖,正方形 ABCD 的邊長(zhǎng)為 4,E 是 BC 的中點(diǎn),點(diǎn) P 在射線 AD 上,過(guò)點(diǎn) P 作 PF⊥AE,垂足為 F.

(1)求證:△PFA∽△ABE;

(2)當(dāng)點(diǎn) P 在射線 AD 上運(yùn)動(dòng)時(shí),設(shè) PA=x,是否存在實(shí)數(shù) x,使以 P,F(xiàn),E 為頂點(diǎn)的三角形也與△ABE

相似?若存在,求出 x 的值;若不存在,說(shuō)明理由.

【答案】(1)見(jiàn)解析;(2)當(dāng)x=2x=5時(shí),以P,F(xiàn),E為頂點(diǎn)的三角形與ABE相似.

【解析】分析(1)在△PFA與△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;
(2)根據(jù)題意:若△EFP∽△ABE,則∠PEF=∠EAB;必須有PE∥AB;分兩種情況進(jìn)而列出關(guān)系式.

詳解:證明:∵正方形ABCD

∴AD∥BC ,∠B=90°

∴∠PAF=∠AEB

∵PF⊥AE

∴∠PFA=∠B=90°

∴△PFA∽△ABE .

(2)情況1,當(dāng)△EFP∽ABE時(shí),則有∠PEF=∠EAB,

∴PE∥AB, ∵AD∥BC ∠B=90°

∴四邊形ABEP為矩形

∴PA=EB=2,即x=2.

情況2,當(dāng)△PFE∽△ABE時(shí),且∠PEF=∠AEB時(shí),

∵∠PAF=∠AEB

∴∠PEF=∠PAF,

∴PE=PA

∵PF⊥AE

∴點(diǎn)FAE的中點(diǎn)

∵AE=

,

,得:

∴PE=5, ∴PA= PE=5,即x=5.

∴當(dāng)x=2x=5時(shí),以P,F(xiàn),E為頂點(diǎn)的三角形與△ABE相似.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課間,小明拿著老師的等腰三角板玩,不小心掉到兩墻之間,如圖.

(1)求證:△ADC≌△CEB;

(2)從三角板的刻度可知AC=25cm,請(qǐng)你幫小明求出砌墻磚塊的厚度a的大。繅K磚的厚度相等).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)有進(jìn)水管和一個(gè)出水管的容器,每分鐘的進(jìn)水量和出水量都是常數(shù).從某時(shí)刻開(kāi)始的4分鐘內(nèi)只進(jìn)水不出水,在隨后的8分鐘內(nèi)既進(jìn)水又出水.如圖表示的是容器中的水量y(升)與時(shí)間t(分鐘)的圖象.

1)當(dāng)4≤t≤12時(shí),求y關(guān)于t的函數(shù)解析式;

2)當(dāng)t為何值時(shí),y=27?

3)求每分鐘進(jìn)水、出水各是多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,已知ABCDM、N、P分別是AD、BC、BD的中點(diǎn)∠ABD20°,∠BDC70°,則∠NMP的度數(shù)為( 。

A. 50° B. 25° C. 15° D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小高從家門口騎車去離家4千米的單位上班,先花3分鐘走平路1千米,再走上坡路以0.2千米/分鐘的速度走了5分鐘,最后走下坡路花了4分鐘到達(dá)工作單位,若設(shè)他從家開(kāi)始去單位的時(shí)間為t(分鐘),離家的路程為y(千米),則yt8<t≤12)的函數(shù)關(guān)系為( )

A. y=0.5t8<t≤12B. y=0.5t+28<t≤12

C. y=0.5t+88<t≤12D. y="0." 5t-28<t≤12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:是某出租車單程收費(fèi)y()與行駛路程x(千米)之間的函數(shù)關(guān)系圖象,根據(jù)圖象回答下列問(wèn)題:

1當(dāng)行使8千米時(shí),收費(fèi)應(yīng)為 元;

2從圖象上你能獲得哪些信息?(請(qǐng)寫(xiě)出2)

________

____________________________

3求出收費(fèi)y()與行使x(千米)(x≥3)之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一段6000米的道路由甲、乙兩個(gè)工程隊(duì)負(fù)責(zé)完成,已知甲工程隊(duì)每天完成的工作量是乙工程隊(duì)每天完成工作量的2倍,且甲工程隊(duì)單獨(dú)完成此項(xiàng)工程比乙工程隊(duì)單獨(dú)完成此項(xiàng)工程少用10天.

1)求甲、乙兩工程隊(duì)每天各完成多少米?

2)如果甲工程隊(duì)每天需工程費(fèi)700元,乙工程隊(duì)每天需工程費(fèi)500元,甲工程隊(duì)單獨(dú)施工4天后由甲乙兩個(gè)工程隊(duì)共同完成余下的工程,則完成此項(xiàng)工程共需要多少費(fèi)用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ACBC2,∠A=∠B30°,點(diǎn)D在線段AB上運(yùn)動(dòng)(點(diǎn)D不與AB重合),連接CD,作∠CDE30°,DEBC于點(diǎn)E

(1)AB;

(2)當(dāng)AD等于多少時(shí),△ADC≌△BED,請(qǐng)說(shuō)明理由;

(3)在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,△CDE的形狀可以是等腰三角形嗎?若可以,求出AD的長(zhǎng);若不可以,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,□OABC的邊OCy軸的正半軸上,OC3,A(21),反比例函數(shù)y (x0)的圖象經(jīng)過(guò)點(diǎn)B

1)求點(diǎn)B的坐標(biāo)和反比例函數(shù)的關(guān)系式;

2)如圖2,將線段OA延長(zhǎng)交y (x0)的圖象于點(diǎn)D,過(guò)BD的直線分別交x軸、y軸于EF兩點(diǎn),①求直線BD的解析式;②求線段ED的長(zhǎng)度

查看答案和解析>>

同步練習(xí)冊(cè)答案