【題目】(1)對數軸上的點P進行如下操作:先把點P表示的數乘以,再把所得數對應的點向右平移1個單位,得到點P的對應點P′.點A,B在數軸t,對線段AB上的每個點進行上述操作后得到線段A′B′,其中點A,B的對應點分別為A′,B′.如圖1,若點A表示的數是﹣3,則點A′表示的數是 ,若點B′表示的數是2,則點B表示的數是 ;已知線段AB上的點E經過上述操作后得到的對應點E'點E重合,則點E表示的數是 .
(2)在平面直角坐標系xOy中,已知△ABC的頂點A(﹣2,0),B(2,0),C(2,4),對△ABC及其內部的每個點進行如下操作:把每個點的橫、縱坐標都乘以同個實數a,將得到的點先向右平移m單位,冉向上平移n個單位(m>0,n>0),得到△ABC及其內部的點,其中點A,B的對應點分別為A′(1,2),B′(3,2).△ABC內部是否存在點F,使得點F經過上述操作后得到的對應點F′與點F重合,若存在,求出點F的坐標;若不存在請說明理由.
【答案】(1)0,3,;(2)(4,4)
【解析】
(1)根據題目規(guī)定,以及數軸上的數向右平移用加計算即可求出點A′,設點B表示的數為a,根據題意列出方程求解即可得到點B表示的數,設點E表示的數為b,根據題意列出方程計算即可得解;
(2)先根據向上平移橫坐標不變,縱坐標加,向右平移橫坐標加,縱坐標不變求出平移規(guī)律,然后設點F的坐標為(x,y),根據平移規(guī)律列出方程組求解即可.
解:(1)點A′:﹣3×+1=﹣1+1=0,
設點B表示的數為a,則a+1=2,
解得a=3,
設點E表示的數為b,則b+1=b,
解得b=;
故答案為:0,3,;
(2)根據題意,得:,
解得: ,
設點F的坐標為(x,y),
∵對應點F′與點F重合,
∴x+2=x,y+2=y,
解得x=y=4,
所以,點F的坐標為(4,4).
科目:初中數學 來源: 題型:
【題目】已知△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點,D、E分別在BC、AC邊上.
(1)如圖1,F(xiàn)是線段AD上的一點,連接CF,若AF=CF;
①求證:點F是AD的中點;
②判斷BE與CF的數量關系和位置關系,并說明理由;
(2)如圖2,把△DEC繞點C順時針旋轉α角(0<α<90°),點F是AD的中點,其他條件不變,判斷BE與CF的關系是否不變?若不變,請說明理由;若要變,請求出相應的正確結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=25°,O為AB的中點. 將OA繞點O逆時針旋轉θ °至OP(0<θ<180),當△BCP恰為軸對稱圖形時,θ的值為_____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數的圖象與一次函數的圖象交于點A,B,點B的橫坐標是4.點P是第一象限內反比例函數圖象上的動點,且在直線AB的上方.
(1)求k的值;
(2)設直線PA,PB與x軸分別交于點M,N,求證:△PMN是等腰三角形;
(3)設點Q是反比例函數圖象上位于P,B之間的動點(與點P,B不重合),連接AQ,BQ,比較∠PAQ與∠PBQ的大小,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)(問題情境)
課外興趣小組活動時,老師提出了如下問題:
如圖①,在△ABC中,AD是△ABC的中線,若AB=10,AC=8,求AD的取值范圍.
小明在組內經過合作交流,得到了如下的解決方法:延長AD至點E,使DE=AD,連接BE.請根據小明的方法思考:
Ⅰ.由已知和作圖能得到△ADC≌△EDB,依據是________.
A.SSS B.SAS C.AAS D.ASA
Ⅱ.由“三角形的三邊關系”可求得AD的取值范圍是________.
解后反思:題目中出現(xiàn)“中點”、“中線”等條件,可考慮延長中線構造全等三角形,把分散的已知條件和所求證的結論集中到同一個三角形之中.
(2)(學會運用)
如圖②,AD是 △ABC的中線,點E在BC的延長線上,CE=AB, ∠BAC=∠BCA, 求證:AE=2AD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖△ABC,AB=AC=24厘米,∠B=∠C,BC=16厘米,點D為AB的中點.點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.若點Q的運動速度為v厘米/秒,則當△BPD與△CQP全等時,v的值為_____ 厘米/秒.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,禁止捕魚期間,某海上稽查隊在某海域巡邏,上午某一時刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時10海里的速度航行,稽查隊員立即乘坐巡邏船以每小時14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,求巡邏船從出發(fā)到成功攔截捕魚船所用的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把代數式通過配湊等手段,得到局部完全平方式,再進行有關運算和解題,這種解題方法叫做配方法.
如:①用配方法分解因式:a2+6a+8,
解:原式=a2+6a+8+1﹣1=a2+6a+9﹣1=(a+2)(a+4)
②M=a2﹣2ab+2b2﹣2b+2,利用配方法求M的最小值,
解:a2﹣2ab+2b2﹣2b+2=a2﹣2ab+b2+b2﹣2b+1+1=(a﹣b)2+(b﹣1)2+1
∵(a﹣b)2≥0,(b﹣1)2≥0
∴當a=b=1時,M有最小值1.
請根據上述材料解決下列問題:
(1)在橫線上添加一個常數,使之成為完全平方式:x2﹣x+ .
(2)用配方法因式分解:x2﹣4xy+3y2.
(3)若M=x2+2x﹣1,求M的最小值.
(4)已知x2+2y2+z2﹣2xy﹣2y﹣4z+5=0,則x+y+z的值為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com