【題目】一艘輪船位于燈塔P南偏西60°方向,距離燈塔20海里的A處,它向東航行多少海里到達(dá)燈塔P南偏西45°方向上的B(參考數(shù)據(jù):≈1.732,結(jié)果精確到0.1)?

【答案】它向東航行約7.3海里到達(dá)燈塔P南偏西45°方向上的B處.

【解析】

利用題意得到ACPC,∠APC=60°,∠BPC=45°,AP=20,如圖,在RtAPC中,利用余弦的定義計(jì)算出PC=10,利用勾股定理求出AC,再判斷△PBC為等腰直角三角形得到BC=PC=10,然后計(jì)算AC-BC即可.

如圖,AC⊥PC∠APC=60°,∠BPC=45°,AP=20,

Rt△APC中,∵cos∠APC=

∴PC=20cos60°=10,

∴AC==10,

△PBC中,∵∠BPC=45°,

∴△PBC為等腰直角三角形,

∴BC=PC=10,

∴AB=ACBC=1010≈7.3(海里),

答:它向東航行約7.3海里到達(dá)燈塔P南偏西45°方向上的B處.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“驢友”小明分三次從M地出發(fā)沿著不同的線路線,B線,CN在每條線路上行進(jìn)的方式都分為穿越叢林、涉水行走和攀登這三種他涉水行走4小時(shí)的路程與攀登6小時(shí)的路程相等線、C線路程相等,都比A線路程多,A線總時(shí)間等于C線總時(shí)間的,他用了3小時(shí)穿越叢林、2小時(shí)涉水行走和2小時(shí)攀登走完A線,在B線中穿越叢林、涉水行走和攀登所用時(shí)間分別比A線上升了,,,若他用了x小時(shí)穿越叢林、y小時(shí)涉水行走和z小時(shí)攀登走完C線,且xy,z都為正整數(shù),則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在RtABO中,∠B=90°,∠OAB=30°,OA=3.以點(diǎn)O為原點(diǎn),斜邊OA所在直線為x軸,建立平面直角坐標(biāo)系,以點(diǎn)P4,0)為圓心,PA長為半徑畫圓,⊙Px軸的另一交點(diǎn)為N,點(diǎn)M在⊙P上,且滿足∠MPN=60°.⊙P以每秒1個(gè)單位長度的速度沿x軸向左運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts,解答下列問題:

(發(fā)現(xiàn))(1的長度為多少;

2)當(dāng)t=2s時(shí),求扇形MPN(陰影部分)與RtABO重疊部分的面積.

(探究)當(dāng)⊙P和△ABO的邊所在的直線相切時(shí),求點(diǎn)P的坐標(biāo).

(拓展)當(dāng)RtABO的邊有兩個(gè)交點(diǎn)時(shí),請你直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對(duì)角線BDAD,ECD上一點(diǎn),連接AEBD于點(diǎn)FGAF的中點(diǎn),連接DG

1)如圖1,若DG=DF=1,BF=3,求CD的長;

2)如圖2,連接BE,且BE=AD,∠AEB=90°,MN分別為DG,BD上的點(diǎn),且DM=BN,HAB的中點(diǎn),連接HM、HN,求證:∠MHN=AFB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.?dāng)S一枚均勻的骰子,骰子停止轉(zhuǎn)動(dòng)后,6點(diǎn)朝上是必然事件

B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,則甲的射擊成績較穩(wěn)定

C.明天降雨的概率為,表示明天有半天都在降雨

D.了解一批電視機(jī)的使用壽命,適合用普查的方式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校體育組為了解全校學(xué)生“最喜歡的一項(xiàng)球類項(xiàng)目”,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的不完整的統(tǒng)計(jì)圖:

請你根據(jù)統(tǒng)計(jì)圖回答下列問題:

(1)喜歡乒乓球的學(xué)生所占的百分比是多少?并請補(bǔ)全條形統(tǒng)計(jì)圖;

(2)請你估計(jì)全校500名學(xué)生中最喜歡“排球”項(xiàng)目的有多少名?

(3)在扇形統(tǒng)計(jì)圖中,“籃球”部分所對(duì)應(yīng)的圓心角是多少度?

(4)籃球教練在制定訓(xùn)練計(jì)劃前,將從最喜歡籃球項(xiàng)目的甲、乙、丙、丁四名同學(xué)中任選兩人進(jìn)行個(gè)別座談,請用列表法或樹狀圖法求抽取的兩人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一條河的北岸有兩個(gè)目標(biāo)MN,現(xiàn)在位于它的對(duì)岸設(shè)定兩個(gè)觀測點(diǎn)A、B.已知ABMN,在A點(diǎn)測得∠MAB=60°,在B點(diǎn)測得∠MBA=45°,AB=600米.

(1)求點(diǎn)MAB的距離;(結(jié)果保留根號(hào))

(2)B點(diǎn)又測得∠NBA=53°,求MN的長.(結(jié)果精確到1米)

(參考數(shù)據(jù):≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABCD中,DHAB于點(diǎn)H,CD的垂直平分線交CD于點(diǎn)E,交AB于點(diǎn)F,AB=6,DH=4,BF:FA=1:5.

(1)如圖2,作FGAD于點(diǎn)G,交DH于點(diǎn)M,將DGM沿DC方向平移,得到CG′M′,連接M′B.

①求四邊形BHMM′的面積;

②直線EF上有一動(dòng)點(diǎn)N,求DNM周長的最小值.

(2)如圖3,延長CBEF于點(diǎn)Q,過點(diǎn)QQKAB,過CD邊上的動(dòng)點(diǎn)PPKEF,并與QK交于點(diǎn)K,將PKQ沿直線PQ翻折,使點(diǎn)K的對(duì)應(yīng)點(diǎn)K′恰好落在直線AB上,求線段CP的長.

查看答案和解析>>

同步練習(xí)冊答案