【題目】閱讀下面的材料,解決問(wèn)題.
例題:若m2 +2mn+2n2-6n+9=0,求m和n的值.
解:∵ m2+2mn+2n2- 6n+9=0,
∴m2 +2mn+n2+n2-6n+9=0,
∴(m+n)2 +(n-3)2=0,
∴m+n=0, n-3=0,
∴m=-3, n=3.
問(wèn)題: (1)若2x2 +4x-2xy+y2 +4=0,求xy的值;
(2)已知a, b, c是△ABC的三邊長(zhǎng),且滿足a2+b2=10a+8b-41,求c的取值范圍.
【答案】(1);(2)1<c<9
【解析】
(1)利用完全平方公式進(jìn)行分解因式,然后求出x、y的值,再進(jìn)行計(jì)算即可;
(2)利用完全平方公式進(jìn)行分解因式,然后求出a、b的值,然后利用三角形的三邊關(guān)系,即可得到答案.
解: (1) ∵2x2 +4x- 2xy+y2 +4=0
∴x2 +4x+4+x2 -2xy+y2=0
∴ (x+2)2 +(x-y)2=0
∴x=-2,y=-2,
∴xy=(-2)-2=
(2) ∵a2 +b2=10a + 8b-41
∴a2-10a+25+b2-8b+16=0
∴ (a-5)2 +(b-4)2=0
∴a=5,b=4
∴1<c<9;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,,AC=AD.給出下列條件: ①AB=AE;②BC=ED;③;④ .其中能使的條件為__________ (注:把你認(rèn)為正確的答案序號(hào)都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠BAD=∠DAC=9°,AD⊥AE,且AB+AC=BE,則∠B的大小是( )
A.42°B.44°C.46 °D.48°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中,,,,為上一點(diǎn),為上一點(diǎn),且,分別于、相切,則的半徑為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知扇形中,,弦,點(diǎn)是弧上任意一點(diǎn)(與端點(diǎn)、不重合),于點(diǎn),以點(diǎn)為圓心、長(zhǎng)為半徑作,分別過(guò)點(diǎn)、作的切線,兩切線相交于點(diǎn).
求弧的長(zhǎng);
試判斷的大小是否隨點(diǎn)的運(yùn)動(dòng)而改變?若不變,請(qǐng)求出的大;若改變,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),坐標(biāo)分別為、,且,圖象上有一點(diǎn)在軸下方,在下列四個(gè)算式中判定正確的是________.
①;②;③;④.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是邊長(zhǎng)為5的等邊三角形,點(diǎn)D,E分別在BC,AC上,DE∥AB,過(guò)點(diǎn)E作EF⊥DE,交BC的的延長(zhǎng)線于點(diǎn)F,若BD=2,則DF等于( 。
A.7B.6C.5D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列短文,回答有關(guān)問(wèn)題:
在實(shí)數(shù)這章中,遇到過(guò)、;這樣的式子,我們把這樣的式子叫做二次根式,根號(hào)下的數(shù)叫做被開(kāi)方數(shù).如果一個(gè)二次根式的被開(kāi)方數(shù)中有的因數(shù)能開(kāi)的盡方,可以利用將這些因數(shù)開(kāi)出來(lái),從而將二次根式化簡(jiǎn).當(dāng)一個(gè)二次根式的被開(kāi)方數(shù)中不含開(kāi)得盡方的因數(shù)或者被開(kāi)方數(shù)中不含有分?jǐn)?shù)時(shí),這樣的二次根式叫做最簡(jiǎn)二次根式,例如,化成最簡(jiǎn)二次根式是,化成最簡(jiǎn)二次根式是.幾個(gè)二次根式化成最簡(jiǎn)二次根式以后,如果被開(kāi)方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式,如上面的例子就是同類二次根式.
請(qǐng)判斷下列各式中,哪些是同類二次根式?;
二次根式中的同類二次根式可以像整式中的同類項(xiàng)一樣合并,請(qǐng)計(jì)算:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=+mx+3與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0),
(1)求m的值及拋物線的頂點(diǎn)坐標(biāo).
(2)點(diǎn)P是拋物線對(duì)稱軸l上的一個(gè)動(dòng)點(diǎn),當(dāng)PA+PC的值最小時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com