【題目】如圖,∠BCD=90°,且BC=DC,直線PQ經(jīng)過點(diǎn)D.設(shè)∠PDC=α(45°<α<135°),BA⊥PQ于點(diǎn)A,將射線CA繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°,與直線PQ交于點(diǎn)E.
(1)當(dāng)α=125°時(shí),∠ABC= °;
(2)求證:AC=CE;
(3)若△ABC的外心在其內(nèi)部,直接寫出α的取值范圍.
【答案】(1)125;(2)詳見解析;(3)45°<α<90°.
【解析】
(1)利用四邊形內(nèi)角和等于360度得:∠B+∠ADC=180°,而∠ADC+∠EDC=180°,即可求解;
(2)證明△ABC≌△EDC(AAS)即可求解;
(3)當(dāng)∠ABC=α=90°時(shí),△ABC的外心在其直角邊上,∠ABC=α>90°時(shí),△ABC的外心在其外部,即可求解.
解:(1)在四邊形BADC中,∠B+∠ADC=360°﹣∠BAD﹣∠DCB=180°,
而∠ADC+∠EDC=180°,
∴∠ABC=∠PDC=α=125°,
故答案為125;
(2)∠ECD+∠DCA=90°,∠DCA+∠ACB=90°,
∴∠ACB=∠ECD,
又BC=DC,由(1)知:∠ABC=∠PDC,
∴△ABC≌△EDC(AAS),
∴AC=CE;
(3)當(dāng)∠ABC=α=90°時(shí),△ABC的外心在其直角邊上,
∠ABC=α>90°時(shí),△ABC的外心在其外部,
而45°<α<135°,
故:45°<α<90°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題6分)甲、乙兩人進(jìn)行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標(biāo)有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.
(1)甲從中隨機(jī)抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機(jī)抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個(gè)游戲公平嗎?請用概率的知識加以解釋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中:①有限小數(shù)是有理數(shù);②無限小數(shù)都是無理數(shù);③任意兩個(gè)無理數(shù)的和還是無理數(shù);④開方開不盡的數(shù)是無理數(shù);⑤一個(gè)數(shù)的算術(shù)平方根一定是正數(shù);⑥一個(gè)數(shù)的立方根一定比這個(gè)數(shù);⑦任意兩個(gè)有理數(shù)之間都有有理數(shù),任意兩個(gè)無理數(shù)之間都有無理數(shù).⑧有理數(shù)和數(shù)軸上的點(diǎn)一一對應(yīng);⑨不帶根號的數(shù)一定是有理數(shù);⑩負(fù)數(shù)沒有立方根.其中正確的有( )
A. 個(gè)B. 個(gè)C. 個(gè)D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知A點(diǎn)從(1,0)點(diǎn)出發(fā),以每秒1個(gè)單位長的速度沿著x軸的正方向運(yùn)動,經(jīng)過t秒后,以O(shè),A為頂點(diǎn)作菱形OABC,使B,C點(diǎn)都在第一象限內(nèi),且AO=AC,又以P(0,4)為圓心,PC為半徑的圓恰好與OC所在的直線相切,則t等于( )
A. 2-1 B. 2+1 C. 5 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整.(1)自變量x的取值范圍是全體實(shí)數(shù),x與y的幾組對應(yīng)值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中,m= .
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有 個(gè)交點(diǎn),所以對應(yīng)的方程x2﹣2|x|=0有 個(gè)實(shí)數(shù)根;
②方程x2﹣2|x|=2有 個(gè)實(shí)數(shù)根.
③關(guān)于x的方程x2﹣2|x|=a有4個(gè)實(shí)數(shù)根時(shí),a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,將矩形ABCD沿CE折疊后,使點(diǎn)D恰好落在對角線AC上的點(diǎn)F處.
(1)求EF的長;
(2)求梯形ABCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以3厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動,同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動.若點(diǎn)Q的運(yùn)動速度為_____厘米/秒,△BPD與△CQP全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程:
(1)x2+8x-20=0(用配方法);
(2)x2-2x-3=0;
(3)(x-1)(x+2)=4(x-1);
(4)3x2-6x=1(用公式法).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com