【題目】如圖,在正方形網(wǎng)格中,△ABC各頂點都在格點上,點A,C的坐標分別為(﹣5,1)、(﹣1,4),結(jié)合所給的平面直角坐標系解答下列問題:
(1)①畫出△ABC關(guān)于y軸對稱的△A1B1C1;
②畫出△ABC關(guān)于原點O對稱的△A2B2C2;
(2)點C1的坐標是;點C2的坐標是;
(3)試判斷:△A1B1C1與△A2B2C2是否關(guān)于x軸對稱?(只需寫出判斷結(jié)果) .
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)圖象的頂點在原點O,經(jīng)過點A(1, );點F(0,1)在y軸上.直線y=﹣1與y軸交于點H.
(1)求二次函數(shù)的解析式;
(2)點P是(1)中圖象上的點,過點P作x軸的垂線與直線y=﹣1交于點M,求證:FM平分∠OFP;
(3)當△FPM是等邊三角形時,求P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB//CD,∠B=∠ADC,點E是BC邊上的一點,且AE=DC.
(1)求證:△ABC≌△EAD ;
(2)如果AB⊥AC,求證:∠BAE= 2∠ACB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABC是等邊三角形,點D是線段AC上的一動點,E在BC的延長線上,且BD=DE.
(1)如圖,若點D為線段AC的中點,求證:AD=CE;
(2)如圖,若點D為線段AC上任意一點,求證:AD=CE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,AB=AC,∠BAC=90°.
(1)如圖,若CD平分∠ACB,BE⊥CD,垂足E在CD的延長線上,試探究線段BE和CD的數(shù)量關(guān)系,并證明你的結(jié)論
(2)如圖,若點D在線段BC延長上,BE⊥DE,垂足為E,DE與AB相交于點F.試探究線段BE和FD的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c經(jīng)過A(﹣1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點P是直線l上的一個動點,當△PAC的周長最小時,求點P的坐標;
(3)在直線l上是否存在點M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點M的坐標;若不存在,請說明理由.
(4)若拋物線頂點為D,點Q為直線AC上一動點,當△DOQ的周長最小時,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,F(xiàn)為BE的中點,連結(jié)DF,CF.
(1)如圖①,當點D在AB上,點E在AC上,請直接寫出此時線段DF,CF的數(shù)量關(guān)系和位置關(guān)系.
(2)如圖②,在(1)的條件下將△ADE繞點A順時針旋轉(zhuǎn)45°,請你判斷此時(1)中的結(jié)論是否仍然成立,并證明你的判斷.
(3)如圖③,在(1)的條件下將△ADE繞點A順時針旋轉(zhuǎn)90°,若AD=1,AC=,求此時線段CF的長(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在5×5的正方形網(wǎng)格中,每個小正方形的邊長都是1,在所給網(wǎng)格中按下列要求畫出圖形:
(1)已知點A在格點(即小正方形的頂點)上,畫一條線段AB,長度為,且點B在格點上;
(2)以上題中所畫線段AB為一邊,另外兩條邊長分別是3,,畫一個三角形ABC,使點C在格點上(只需畫出符合條件的一個三角形);
(3)所畫的三角形ABC的AB邊上高線長為_________(直接寫出答案)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com