如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點(diǎn)C旋轉(zhuǎn)得到△EDC,使點(diǎn)D在AB邊上,斜邊DE交AC邊于點(diǎn)F,則圖中△CDF的面積為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在建筑平臺(tái)CD的頂部C處,測(cè)得大樹AB的頂部A的仰角為45°,測(cè)得大樹AB的底部B的俯角為30°,已知平臺(tái)CD的高度為5m,則大樹的高度為 m(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在直角坐標(biāo)系中,把點(diǎn)A(﹣2,3)向上平移3個(gè)單位后得到點(diǎn)B,則點(diǎn)B的坐標(biāo)是( 。
A. (﹣2,6) B.(﹣5,3) C.(1,3) D. (﹣2,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,矩形ABCD中,AB=6cm,BC=8cm,將矩形沿著BD方向移動(dòng),設(shè)BB′=x.
(1)當(dāng)x為多少時(shí),才能使平移后的矩形與原矩形重疊部分的面積為24cm2?
(2)依次連接A′A,AC,CC′,C′A′,四邊形ACC′A′可能是菱形嗎?若可能,求出x的值;若不可能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,P點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P1(﹣3,﹣),P點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)為P2(a,b),則=( )
A. ﹣2 B2 C. 4 D. ﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形ABCD中,AD=4,DC=3,將△ADC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)到△AEF(點(diǎn)A、B、E在同一直線上),則AC在運(yùn)動(dòng)過程中所掃過的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
推理證明:如圖1,在正方形ABCD和正方形CGFE中,連結(jié)DE、BG,設(shè)△DCE的面積為S1,△BCG的面積為S2,求證:S1=S2.
猜想論證:如圖2,將矩形ABCD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)后得到矩形FECG,連結(jié)DE、BG,設(shè)△DCE的面積為S1,△BCG的面積為S2,猜想S1、S2的數(shù)量關(guān)系,并加以證明.
拓展探究:如圖3,在△ABC中,AB=AC=10cm,∠B=30°,把△ABC沿AC翻折到△ACE,過點(diǎn)A作AD∥CE交BC于點(diǎn)D,在線段CE上存在點(diǎn)P,使△ABP的面積等于△ACD的面積,請(qǐng)你直接寫出CP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在Rt△ABC中,∠B=90°,分別以點(diǎn)A、C為圓心,大于AC長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)M、N,連接MN,與AC、BC分別交于點(diǎn)D、E,連接AE.
(1)求∠ADE;(直接寫出結(jié)果)
(2)當(dāng)AB=3,AC=5時(shí),求△ABE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
寫出下列命題的已知、求證,并完成證明過程.
命題:如果一個(gè)三角形的兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱:“等角對(duì)等邊”).
已知:如圖, .
求證: .
證明:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com