【題目】如圖,已知E是矩形ABCD的邊CD上一點,BF⊥AE于F,試說明:△ABF∽△EAD.

【答案】證明:∵矩形ABCD中,AB∥CD,
∴∠BAF=∠AED.
∵BF⊥AE,
∴∠AFB=90°.
∴∠AFB=∠D=90°.
∴△ABF∽△EAD
【解析】根據(jù)兩角對應(yīng)相等的兩個三角形相似可解.
【考點精析】本題主要考查了矩形的性質(zhì)和相似三角形的判定的相關(guān)知識點,需要掌握矩形的四個角都是直角,矩形的對角線相等;相似三角形的判定方法:兩角對應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對應(yīng)成比例,兩三角形相似(SSS)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,對稱軸是x=1,有以下四個結(jié)論:
①abc>0;②b2﹣4ac>0;③b=﹣2a;④a+b+c>2,
其中正確的是(填寫序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉(zhuǎn)n度后,得到△DEC,點D剛好落在AB邊上.

(1)求n的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲所示,已知AEAB,AFAC,AE=AB,AF=AC. BFCE相交于點M

(1)求證:①△ACE≌△AFB;ECBF.

(2)如圖乙連接EF,畫出ABCBC上的高線AD,延長DAEF于點N,其他條件不變,下列四個結(jié)論:①∠EAN=ABC;

②△AEN≌△BAD;;EN=FN。

正確的結(jié)論是____________(把正確結(jié)論的序號全部填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.若AB=3cm,BC=5cm,點PB點出發(fā),以1cm/s的速度沿BC→CD→DA運動至A點停止,則從運動開始經(jīng)過多少時間,△ABP為等腰三角形?

備用圖1

備用圖2 備用圖3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩工程隊維修同一段路面,甲隊先清理路面,乙隊在甲隊清理后鋪設(shè)路面.乙隊在中途停工了一段時間,然后按停工前的工作效率繼續(xù)工作.在整個工作過程中,甲隊清理完的路面長y(米)與時間x(時)的函數(shù)圖象為線段OA,乙隊鋪設(shè)完的路面長y(米)與時間x(時)的函數(shù)圖象為折線BC-CD-DE,如圖所示,從甲隊開始工作時計時.

(1)分別求線段BC、DE所在直線對應(yīng)的函數(shù)關(guān)系式.

(2)當(dāng)甲隊清理完路面時,求乙隊鋪設(shè)完的路面長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一只青蛙在圓周上標(biāo)有數(shù)字的五個點上跳,若它停在奇數(shù)點上,則下一次沿順時針方向跳兩個點;若停在偶數(shù)點上,則下一次沿逆時針方向跳一個點,若青蛙從4這點開始跳,則經(jīng)2015次跳后它停在數(shù)對應(yīng)的點上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過邊長為1的等邊△ABC的邊AB上一點P,作PE⊥AC于E,Q為BC延長線上一點,當(dāng)PA=CQ時,連PQ交AC邊于D,則DE的長為( )

A. B. C. D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ACB=60°,半徑為1cm的⊙O切BC于點C,若將⊙O在CB上向右滾動,則當(dāng)滾動到⊙O與CA也相切時,圓心O移動的水平距離是cm.

查看答案和解析>>

同步練習(xí)冊答案