【題目】有3個整式x,x+1,2,先隨機(jī)取一個整式作為分子,再在余下的整式中隨機(jī)取一個作為分母,恰能組成成分式的概率是( )
A.
B.
C.
D.

【答案】C
【解析】畫樹狀圖為:

共有6種等可能的結(jié)果數(shù),其中恰能組成成分式的結(jié)果數(shù)為4,

所以恰能組成成分式的概率=

所以答案是:C.


【考點精析】根據(jù)題目的已知條件,利用列表法與樹狀圖法和概率公式的相關(guān)知識可以得到問題的答案,需要掌握當(dāng)一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率;一般地,如果在一次試驗中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率為P(A)=m/n.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠ABC=60°,AB=1,E為BC的中點,則對角線BD上的動點P到E、C兩點的距離之和的最小值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正值重慶一中85年校慶之際,學(xué)校計劃利用校友慈善基金購買一些平板電腦和打印機(jī).經(jīng)市場調(diào)查,已知購買1臺平板電腦比購買3臺打印機(jī)多花費600元,購買2臺平板電腦和3臺打印機(jī)共需8400元.

(1)求購買1臺平板電腦和1臺打印機(jī)各需多少元?

(2)學(xué)校根據(jù)實際情況,決定購買平板電腦和打印機(jī)共100臺,要求購買的總費用不超過168000元,且購買打印機(jī)的臺數(shù)不低于購買平板電腦臺數(shù)的2倍.請問最多能購買平板電腦多少臺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,DE平分∠ADB,則∠B=( )

A. 40° B. 30° C. 25° D. 22.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長為12,在其角上去掉兩個全等的矩形DMNP和矩形BIJK,DM=IB=2,DP=BK=3,正方形EFGH頂點分別在正方形ABCD的邊上,且EH過N點,則正方形EFGH的邊長是( )

A.10
B.3
C.4
D.3 或4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB是一角度為10°的鋼架,要使鋼架更加牢固,需在其內(nèi)部添加一些鋼管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足夠長的情況下,最多能添加這樣的鋼管的根數(shù)為 _________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣2x﹣3,點P在該函數(shù)的圖象上,點P到x軸、y軸的距離分別為d1、d2 . 設(shè)d=d1+d2 , 下列結(jié)論中: ①d沒有最大值;
②d沒有最小值;
③﹣1<x<3時,d隨x的增大而增大;
④滿足d=5的點P有四個.
其中正確結(jié)論的個數(shù)有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段AB,CD相交于點O,AD,CB的延長線交于點E,OA=OC,EA=EC.

(1)試說明:∠A=∠C;

(2)在(1)的解答過程中,需要作輔助線,它的意圖是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中,用數(shù)字表示的∠1∠2、∠3∠4各角中,錯誤的判斷是(  )

A. 若將AC作為第三條直線,則∠1∠3是同位角

B. 若將AC作為第三條直線,則∠2∠4是內(nèi)錯角

C. 若將BD作為第三條直線,則∠2∠4是內(nèi)錯角

D. 若將CD作為第三條直線,則∠3∠4是同旁內(nèi)角

查看答案和解析>>

同步練習(xí)冊答案