【題目】如圖,已知點(diǎn),,且點(diǎn)B在雙曲線上,在AB的延長(zhǎng)線上取一點(diǎn)C,過點(diǎn)C的直線交雙曲線于點(diǎn)D,交x軸正半軸于點(diǎn)E,且,則線段CE長(zhǎng)度的取值范圍是
A. B. C. D.
【答案】D
【解析】
過D作DF⊥OA于F,得到DF是梯形的中位線,根據(jù)反比例函數(shù)圖形上點(diǎn)的坐標(biāo)特征求出D的坐標(biāo),當(dāng)O與E重合時(shí),如圖2,由DF=8,根據(jù)三角形的中位線的性質(zhì)得到AC,根據(jù)勾股定理求得CE,當(dāng)CE⊥x軸時(shí),CE=OA=6,于是求得結(jié)果.
過D作DF⊥OA于F.
∵點(diǎn)A(0,6),B(4,6),∴AB⊥y軸,AB=4,OA=6.
∵CD=DE,∴AF=OF=3.
∵點(diǎn)B在雙曲線y(k>0)上,∴k=4×6=24,∴反比例函數(shù)的解析式為:y.
∵過點(diǎn)C的直線交雙曲線于點(diǎn)D,∴D點(diǎn)的縱坐標(biāo)為3,代入y得:3,解得:x=8,∴D(8,3).
當(dāng)O與E重合時(shí),如圖2.
∵DF=8,∴AC=16.
∵OA=6,∴CE;
當(dāng)CE⊥x軸時(shí),CE=OA=6,∴6≤CE≤2.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小章為學(xué)校舉辦的數(shù)學(xué)文化節(jié)沒計(jì)的標(biāo)志,在△ABC中,∠ACB=90°,以△ABC的各邊為邊作三個(gè)正方形,點(diǎn)G落在HI上,若AC+BC=6,空自部分面積為10.5,則陰影部分面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,剪兩張對(duì)邊平行且寬度相等的紙條隨意交叉疊放在一起,轉(zhuǎn)動(dòng)其中一張,重合部分構(gòu)成一個(gè)四邊形,則下列結(jié)論中不一定成立的是( )
A. ∠ABC=∠ADC,∠BAD=∠BCD B. AB=BC
C. AB=CD,AD=BC D. ∠DAB+∠BCD=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一科技小組進(jìn)行了機(jī)器人行走性能試驗(yàn),在試驗(yàn)場(chǎng)地有A、B、C三點(diǎn)順次在同一筆直的賽道上,甲、乙兩機(jī)器人分別從A、B兩點(diǎn)同時(shí)同向出發(fā),歷時(shí)7分鐘同時(shí)到達(dá)C點(diǎn),乙機(jī)器人始終以60米/分的速度行走,如圖是甲、乙兩機(jī)器人之間的距離y(米)與他們的行走時(shí)間x(分鐘)之間的函數(shù)圖象,請(qǐng)結(jié)合圖象,回答下列問題:
(1)A、B兩點(diǎn)之間的距離是 米,甲機(jī)器人前2分鐘的速度為 米/分;
(2)若前3分鐘甲機(jī)器人的速度不變,求線段EF所在直線的函數(shù)解析式;
(3)若線段FG∥x軸,則此段時(shí)間,甲機(jī)器人的速度為 米/分;
(4)求A、C兩點(diǎn)之間的距離;
(5)若前3分鐘甲機(jī)器人的速度不變,直接寫出兩機(jī)器人出發(fā)多長(zhǎng)時(shí)間相距28米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,BC邊在x軸上,BC的中點(diǎn)與原點(diǎn)O重合,過定點(diǎn)M(-2,0)與動(dòng)點(diǎn)P(0,t)的直線MP記作l.
(1)若l的解析式為y=2x+4,判斷此時(shí)點(diǎn)A是否在直線l上,并說明理由;
(2)當(dāng)直線l與AD邊有公共點(diǎn)時(shí),求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形紙片ABCD中,,,翻折矩形紙片,使點(diǎn)A落在對(duì)角線DB上的點(diǎn)F處,折痕為DE,打開矩形紙片,并連接EF.
的長(zhǎng)為多少;
求AE的長(zhǎng);
在BE上是否存在點(diǎn)P,使得的值最?若存在,請(qǐng)你畫出點(diǎn)P的位置,并求出這個(gè)最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“學(xué)而時(shí)習(xí)之,不亦樂乎!”,古人把經(jīng)常復(fù)習(xí)當(dāng)作是一種樂趣,能達(dá)到這種境界是非常不容易的.復(fù)習(xí)可以讓遺忘的知識(shí)得到補(bǔ)拾,零散的知識(shí)變得系統(tǒng),薄弱的知識(shí)有所強(qiáng)化,掌握的知識(shí)更加鞏固,生疏的技能得到訓(xùn)練.為了了解初一學(xué)生每周的復(fù)習(xí)情況,教務(wù)處對(duì)初一(1)班學(xué)生一周復(fù)習(xí)的時(shí)間進(jìn)行了調(diào)查,復(fù)習(xí)時(shí)間四舍五入后只有4種:1小時(shí),2小時(shí),3小時(shí),4小時(shí),一周復(fù)習(xí)2小時(shí)的女生人數(shù)占全班人數(shù)的16%,一周復(fù)習(xí)4小時(shí)的男女生人數(shù)相等.根據(jù)調(diào)查結(jié)果,制作了兩幅不完整的統(tǒng)計(jì)圖(表):
分組(四舍五入后) | 頻數(shù)(學(xué)生人數(shù)) |
1小時(shí) | 2 |
2小時(shí) | a |
3小時(shí) | 4 |
4小時(shí) | b |
初一(1)班女生的復(fù)習(xí)時(shí)間數(shù)據(jù)(單位:小時(shí))如下:0.9,1.3,1.7,1.8,1.9,2.2,2.2,2.2,2.3,2.4,3.2,3.2,3.2,3.3,3.8,3.9,3.9,4.1,4.2,4.3.
女生一周復(fù)習(xí)時(shí)間頻數(shù)分布表
(1)四舍五入前,女生一周復(fù)習(xí)時(shí)間的眾數(shù)為______小時(shí),中位數(shù)為______小時(shí);
(2)統(tǒng)計(jì)圖表中a=______,c=______,初一(1)班男生人數(shù)為______人,根據(jù)扇形統(tǒng)計(jì)圖估算初一(1)班男生一周的平均復(fù)習(xí)時(shí)間為______小時(shí);
(3)為了激勵(lì)學(xué)生養(yǎng)成良好的復(fù)習(xí)習(xí)慣,教務(wù)處決定對(duì)一周復(fù)習(xí)時(shí)間四舍五入后達(dá)到3小時(shí)及以上的全年級(jí)學(xué)生進(jìn)行表揚(yáng),每人獎(jiǎng)勵(lì)1個(gè)筆記本,初一年級(jí)共有1000名學(xué)生,請(qǐng)問教務(wù)處應(yīng)該準(zhǔn)備大約多少個(gè)筆記本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費(fèi);超過1千克,超過的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.
(1)請(qǐng)分別寫出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)小明選擇哪家快遞公司更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點(diǎn),過點(diǎn)A作AC⊥x軸于點(diǎn)C,過點(diǎn)B作BD⊥x軸于點(diǎn)D.
(1)求a,b的值及反比例函數(shù)的解析式;
(2)若點(diǎn)P在直線y=﹣x+2上,且S△ACP=S△BDP,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);
(3)在x軸正半軸上是否存在點(diǎn)M,使得△MAB為等腰三角形?若存在,請(qǐng)直接寫出M點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com