【題目】如圖,△ABC是等邊三角形,D是BC邊的中點,以D為頂點作一個120°的角,角的兩邊分別交直線AB,AC于M,N兩點,以點D為中心旋轉(zhuǎn)∠MDN(∠MDN的度數(shù)不變),若DM與AB垂直時(如圖①所示),易證BM +CN =BD.
(1)如圖②,若DM與AB不垂直時,點M在邊AB上,點N在邊AC上,上述結(jié)論是否成立?若成立,請給予證明;若不成立,請說明理由;
(2)如圖③,若DM與AB不垂直時,點M在邊AB.上,點N在邊AC的延長線上,上述結(jié)論是否成立?若不成立,請寫出BM,CN,BD之間的數(shù)量關(guān)系,不用證明.
【答案】(1)成立,見解析;(2)圖③的結(jié)論不成立.圖③的結(jié)論為BM-CN = BD.
【解析】
(1)根據(jù)等邊三角形的性質(zhì),及過D作DE平行AC交AB于E點,構(gòu)造△DME與△DNC全等,利用全等三角形的對應(yīng)邊相等及線段的和差關(guān)系給予證明.(2)利用同(1)的方法構(gòu)造全等,根據(jù)和差關(guān)系得出的結(jié)論為BM-CN = BD.
(1)證明:圖②的結(jié)論成立,為BM +CN = BD.理由如下:
如圖,過點D作DE//AC交AB于點E.
∵△ABC是等邊三角形,
∴∠A=∠B=∠C=60°.
∵DE//AC,
∴∠BED=∠BDE =∠A=∠C=∠B= 60°,
∴△BDE是等邊三角形,
∴∠EDC = 120°.
∴∠EDN +∠NDC= 120°.
∵∠MDN= 120°,
∴∠EDN十∠MDE = 120°,
∴∠NDC=∠MDE.
∵D是BC的中點,
∴BD = DC,
∴BD=DE = DC.
∵∠BED=∠C =60°
∴△DME≌△DNC.
∴ME = NC,
∴BM十ME= BE,
∴BM十CN= BD.
(2)解:圖③的結(jié)論不成立.正確結(jié)論為BM-CN = BD.理由如下:
如圖,過點D作DF//AC交AB于點F.
∵△ABC是等邊三角形,
∴∠A=∠B=∠ACB=60°,
∴DF//AC,
∴∠BFD=∠BDF=∠A=∠ACB =∠B = 60°.,
∴△BDF是等邊三角形,
∴∠FDC =∠MFD=∠DCN=120°,
∴∠FDM +∠MDC= 120°.
∵∠MDN= 120°,
∴∠MDC十∠NDC = 120°,
∴∠NDC=∠FDM.
∵D是BC的中點,
∴BD = DC,
∴BD=DF = DC.
∵∠MFD=∠DCN=120°,
∴△DMF≌△DNC,
∴MF = NC,
∴BM-MF =BF ,
∴BM-CN =BD .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了掌握我市中考模擬數(shù)學(xué)考試卷的命題質(zhì)量與難度系數(shù),調(diào)研老師在我市某地選取一個水平相當(dāng)?shù)某跞昙夁M行調(diào)研,將隨機抽取的部分學(xué)生成績(得分為整數(shù),滿分為150分)分為5組(從左到右的順序).統(tǒng)計后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖.觀察圖形的信息,回答下列問題:
(1)本次調(diào)查共隨機抽取了該年級___________名學(xué)生,考試成績120分以上(含120分)學(xué)生有_________名;
(2)規(guī)定:成績位于前5%的可獲得小禮品一份,在被調(diào)查的學(xué)生中,某位學(xué)生成績?yōu)?/span>134分,試判斷他是否能獲獎,說明理由;
(3)如果第一組中只有一名是女生,第五組中只有一名是男生,針對考試成績情況,命題教師決定從第一組、第五組分別隨機選出一名同學(xué)談?wù)勛鲱}的感想…,請你用列表或畫樹狀圖的方法求出所選兩名學(xué)生剛好是一名女生和一名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點,連接OG并延長交⊙O于點D,連接BD交AE于點F,延長AE至點C,使得FC=BC,連接BC.
(1)求證:BC是⊙O的切線;
(2)⊙O的半徑為5,tanA=,求FD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,點E是AC的中點.
(1)試判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑為2,∠B=50°,AC=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對垃圾進行分類投放,能提高垃圾處理和再利用的效率,減少污染,保護環(huán)境.為了檢查垃圾分類的落實情況,某居委會成立了甲、乙兩個檢查組,采取隨機抽查的方式分別對轄區(qū)內(nèi)的A,B,C,D四個小區(qū)進行檢查,并且每個小區(qū)不重復(fù)檢查.
(1)甲組抽到A小區(qū)的概率是多少;
(2)請用列表或畫樹狀圖的方法求甲組抽到A小區(qū),同時乙組抽到C小區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:y=x2+bx+c
(1)若拋物線過點(2,﹣3),(4,5),求b、c.
(2)若拋物線過(﹣1,m2﹣m),(2,m2+2m),且﹣5≤m≤﹣3,求在m的變化過程中,拋物線最低點的坐標.
(3)直線y=2x+n與拋物線y=x2+bx+c交于A(﹣5,yA),B(﹣3,yB),把y=x2+bx+c向右平移t個單位(t>0)后交直線y=2x+n于C、D兩點,若CD=2AB,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知二次函數(shù)y=ax2+bx+c的圖象與x交于A,B兩點,與y軸交于點C,對稱軸為直線x=1.直線y=﹣x+c與拋物線y=ax2+bx+c交于C,D兩點,D點在x軸下方且橫坐標小于3,則下列結(jié)論錯誤的是( 。
A.2a+b+c>0
B.a<﹣1
C.x(ax+b)≤a+b
D.雙曲線y=的兩分支分別位于第一、第三象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實行垃圾資源化利用,是社會文明水平的一個重要體現(xiàn).某環(huán)保公司研發(fā)的甲、乙兩種智能設(shè)備可利用最新技術(shù)將干垃圾變身為燃料棒.某垃圾處理廠從環(huán)保公司購入以上兩種智能設(shè)備,若干已知購買甲型智能設(shè)備花費360萬元,購買乙型智能設(shè)備花費480萬元,購買的兩種設(shè)備數(shù)量相同,且兩種智能設(shè)備的單價和為140萬元.
(1)求甲乙兩種智能設(shè)備單價;
(2)垃圾處理廠利用智能設(shè)備生產(chǎn)燃料棒,并將產(chǎn)品出售.已知燃料棒的成本由人力成本和物資成本兩部分組成,其中物資成本占總成本的40%,且生產(chǎn)每噸燃料棒所需人力成本比物資成本的倍還多10元,調(diào)查發(fā)現(xiàn):若燃料棒售價為每噸200元,平均每天可售出350噸,而當(dāng)銷售價每降低1元,平均每天可多售出5噸,但售價在每噸200元基礎(chǔ)上降價幅度不超過7%,
①垃圾處理廠想使這種燃料棒的銷售利潤平均每天達到36080元,求每噸燃料棒售價應(yīng)為多少元?
②每噸燃料棒售價應(yīng)為多少元時,這種燃料棒平均每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com