【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點(diǎn),連接OG并延長(zhǎng)交⊙O于點(diǎn)D,連接BD交AE于點(diǎn)F,延長(zhǎng)AE至點(diǎn)C,使得FC=BC,連接BC.
(1)求證:BC是⊙O的切線;
(2)⊙O的半徑為5,tanA=,求FD的長(zhǎng).
【答案】(1)證明見解析(2)
【解析】
(1)由點(diǎn)G是AE的中點(diǎn),根據(jù)垂徑定理可知OD⊥AE,由等腰三角形的性質(zhì)可得∠CBF=∠DFG,∠D=∠OBD,從而∠OBD+∠CBF=90°,從而可證結(jié)論;
(2)連接AD,解Rt△OAG可求出OG=3,AG=4,進(jìn)而可求出DG的長(zhǎng),再證明△DAG∽△FDG,由相似三角形的性質(zhì)求出FG的長(zhǎng),再由勾股定理即可求出FD的長(zhǎng).
(1)∵點(diǎn)G是AE的中點(diǎn),
∴OD⊥AE,
∵FC=BC,
∴∠CBF=∠CFB,
∵∠CFB=∠DFG,
∴∠CBF=∠DFG
∵OB=OD,
∴∠D=∠OBD,
∵∠D+∠DFG=90°,
∴∠OBD+∠CBF=90°
即∠ABC=90°
∵OB是⊙O的半徑,
∴BC是⊙O的切線;
(2)連接AD,
∵OA=5,tanA=,
∴OG=3,AG=4,
∴DG=OD﹣OG=2,
∵AB是⊙O的直徑,
∴∠ADF=90°,
∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°
∴∠DAG=∠FDG,
∴△DAG∽△FDG,
∴,
∴DG2=AGFG,
∴4=4FG,
∴FG=1
∴由勾股定理可知:FD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=15,且△ABC的面積為90,D是線段AB上的動(dòng)點(diǎn)(包含端點(diǎn)),若線段CD的長(zhǎng)為正整數(shù),則點(diǎn)D的個(gè)數(shù)共有( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB與x軸交于點(diǎn)C,與y軸交于點(diǎn)B,點(diǎn)A(1,3),點(diǎn)B(0,2).連接AO
(1)求直線AB的解析式;
(2)求三角形AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一圓柱,其高為12cm,它的底面半徑為3cm,在圓柱下底面A處有一只螞蟻,它想得到上面B處的食物,則螞蟻經(jīng)過的最短距離為_________.(π取3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘船在A處望見燈塔E在北偏東60°方向上,此船沿正東方向航行60海里后到達(dá)B處,在B處測(cè)得燈塔E在北偏東15°方向上.
(1)求∠AEB的度數(shù);
(2)①求A處到燈塔E的距離AE;
②已知燈塔E周圍40海里內(nèi)有暗礁,問:此船繼續(xù)向東方向航行,有無(wú)觸礁危險(xiǎn)?(參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在半徑為13的圓O中,弦AB平行于弦CD,弦AB和弦CD之間的距離為6,若AB=24,則CD長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在銳角△ABC中,AC是最短邊.以AC為直徑的⊙O,交BC于D,過O作OE∥BC,交OD于E,連接AD、AE、CE.
(1)求證:∠ACE=∠DCE;
(2)若∠B=45°,∠BAE=15°,求∠EAO的度數(shù);
(3)若AC=4,,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在正方形ABCD邊AD上,連接PB.過點(diǎn)B作一條射線與邊DC的延長(zhǎng)線交于點(diǎn)Q,使得∠QBE=∠PBC,其中E是邊AB延長(zhǎng)線上的點(diǎn),連接PQ.若PQ2=PB2+PD2+2,則△PAB的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,點(diǎn)E在BC上.過點(diǎn)D作DF∥BC,連接DB.
求證:(1)△ABD≌△ACE;
(2)DF=CE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com