【題目】某銷售公司年終進行業(yè)績考核,人事部門把考核結果按照A,B,C,D四個等級,繪制成兩個不完整的統(tǒng)計圖,如圖1,圖2.
參加考試的人數(shù)是______,扇形統(tǒng)計圖中D部分所對應的圓心角的度數(shù)是______,請把條形統(tǒng)計圖補充完整;
若公司領導計劃從考核人員中選一人交流考核意見,求所選人員考核為A等級的概率;
為推動公司進一步發(fā)展,公司決定計劃兩年內(nèi)考核A等級的人數(shù)達到30人,求平均每年的增長率精確到,
【答案】(1)50,36;(2);(3)12%.
【解析】
根據(jù)A等級的人數(shù)和所占的百分比求出總人數(shù);用D等級所占的百分比乘以即可求出D部分所對應的圓心角的度數(shù);用總人數(shù)減去其它等級的人數(shù),求出C等級的人數(shù),從而補全統(tǒng)計圖;
用A等級的人數(shù)除以總人數(shù)即可得出所選人員考核為A等級的概率;
設平均每年的增長率是x,根據(jù)兩年內(nèi)考核A等級的人數(shù)達到30人列出方程,然后求解即可.
解:參加考試的人數(shù)是:人;
扇形統(tǒng)計圖中D部分所對應的圓心角的度數(shù)是:;
C等級的人數(shù)是:人,補圖如下:
故答案為50,36;
因為參考人數(shù)是50,考核為A等級的人數(shù)是24,
(考核為A等級);
設增長率是x,依題意列方程得:
,
解得:,(舍去),
答:每年增長率為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x與反比例函數(shù)y=(x>0)的圖象相交于點D,點A為直線y=x上一點,過點A作AC⊥x軸于點C,交反比例函數(shù)y=(x>0)的圖象于點B,連接BD.
(1)若點B的坐標為(8,2),則k= ,點D的坐標為 ;
(2)若AB=2BC,且△OAC的面積為18,求k的值及△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表是小安填寫的數(shù)學實踐活動報告的部分內(nèi)容
題 目 | 測量鐵塔頂端到地面的高度 | |
測量目標示意圖 | ||
相關數(shù)據(jù) | CD=20m,ɑ=45°,β=52° |
求鐵塔的高度FE(結果精確到1米)(參考數(shù)據(jù):sin52°≈0.79, cos52°≈0.62,tan52°≈1.28)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)(是常數(shù))的圖象與軸交于兩點(點在點的左邊).
(1)如果二次函數(shù)的圖象經(jīng)過原點.
①求的值;
②若,點是一次函數(shù)圖象上的一點,且,求的取值范圍;
(2)當時,函數(shù)的最大值為5,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3過A(1,0),B(﹣3,0),直線AD交拋物線于點D,點D的橫坐標為﹣2,點P(m,n)是線段AD上的動點.
(1)求直線AD及拋物線的解析式;
(2)過點P的直線垂直于x軸,交拋物線于點Q,求線段PQ的長度l與m的關系式,m為何值時,PQ最長?
(3)在平面內(nèi)是否存在整點(橫、縱坐標都為整數(shù))R,使得P,Q,D,R為頂點的四邊形是平行四邊形?若存在,直接寫出點R的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE.
(1)發(fā)現(xiàn):當正方形AEFG繞點A旋轉,如圖②所示.
①線段DG與BE之間的數(shù)量關系是 ;
②直線DG與直線BE之間的位置關系是 ;
(2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE時,上述結論是否成立,并說明理由.
(3)應用:在(2)的情況下,連接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接寫出結果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=x﹣3與雙曲線y=(k>0)交于A、B兩點,點A的縱坐標為1.
(1)求點B的坐標;
(2)直接寫出當x在什么范圍內(nèi)時,代數(shù)式x2﹣3x的值小于k的值;
(3)點C(2,m)是直線AB上一點,點D(n,4)是雙曲線y=上一點,將△OCD沿射線BA方向平移,得到△O′C′D′.若點O的對應點O′落在雙曲線y=上,求點D的對應點D′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四位同學在研究函數(shù)(是常數(shù))時,甲發(fā)現(xiàn)當時,函數(shù)有最小值;乙發(fā)現(xiàn)是方程的一個根;丙發(fā)現(xiàn)函數(shù)的最小值為3;丁發(fā)現(xiàn)當時,,已知這四位同學中只有一位發(fā)現(xiàn)的結論是錯誤的,則該同學是( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com