【題目】如圖,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度數(shù).
【答案】解:∵∠A=40°,∠B=72°,
∴∠ACB=180°﹣(∠A+∠B),
=180°﹣(30°+62°),
=180°﹣92°,
=88°,
∵CE平分∠ACB,
∴∠ECB=∠ACB=44°,
∵CD⊥AB于D,
∴∠CDB=90°,
∴∠BCD=90°﹣∠B=90°﹣62°=28°,
∴∠ECD=∠ECB﹣∠BCD=44°﹣28°=16°,
∵DF⊥CE于F,
∴∠CFD=90°,
∴∠CDF=90°﹣∠ECD=90°﹣16°=74°.
【解析】首先根據(jù)三角形的內(nèi)角和定理求得∠ACB的度數(shù),以及∠BCD的度數(shù),根據(jù)角的平分線的定義求得∠BCE的度數(shù),則∠ECD可以求解,然后在△CDF中,利用內(nèi)角和定理即可求得∠CDF的度數(shù).
【考點(diǎn)精析】本題主要考查了三角形三邊關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握三角形兩邊之和大于第三邊;三角形兩邊之差小于第三邊;不符合定理的三條線段,不能組成三角形的三邊才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,平面直角坐標(biāo)系x0y中,點(diǎn)A(0,2),B(1,0),C(﹣4,0)點(diǎn)D為射線AC上一動(dòng)點(diǎn),連結(jié)BD,交y軸于點(diǎn)F,⊙M是△ABD的外接圓,過(guò)點(diǎn)D的切線交x軸于點(diǎn)E.
(1)判斷△ABC的形狀;
(2)當(dāng)點(diǎn)D在線段AC上時(shí),
①證明:△CDE∽△ABF;
②如圖2,⊙M與y軸的另一交點(diǎn)為N,連結(jié)DN、BN,當(dāng)四邊形ABND為矩形時(shí),求tan∠DBC;
(3)點(diǎn)D在射線AC運(yùn)動(dòng)過(guò)程中,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值:3x3﹣[x3﹣3y+(6x2﹣7x)]﹣2(x3﹣3x2﹣4x+y),其中x=﹣1,y=2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖四邊形ABCD中,AD=DC,∠DAB=∠ACB=90°,過(guò)點(diǎn)D作DF⊥AC,垂足為F.DF與AB相交于E.設(shè)AB=15,BC=9,P是射線DF上的動(dòng)點(diǎn).當(dāng)△BCP的周長(zhǎng)最小時(shí),DP的長(zhǎng)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一枚運(yùn)載火箭從地面O處發(fā)射,當(dāng)火箭到達(dá)A點(diǎn)時(shí),從地面C處的雷達(dá)站測(cè)得AC的距離是6km,仰角是43°,1s后,火箭到達(dá)B點(diǎn),此時(shí)測(cè)得仰角為45.5°,這枚火箭從點(diǎn)A到點(diǎn)B的平均速度是多少?(結(jié)果精確到0.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面可以用來(lái)驗(yàn)證式子3﹣(﹣1)=4正確的是( 。
A. 4+(﹣1)B. 4﹣(﹣1)C. 4×(﹣1)D. 4÷(﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將準(zhǔn)確數(shù)1.804精確到百分位后,得到的近似數(shù)為( )
A. 1.8 B. 1.80 C. 1.81 D. 1.800
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用配方法解方程:x2﹣4x+2=0,下列配方正確的是( )
A.(x﹣2)2=2
B.(x+2)2=2
C.(x﹣2)2=﹣2
D.(x﹣2)2=6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com