【題目】如圖所示,已知等邊△ABC的兩個(gè)頂點(diǎn)的坐標(biāo)為A(-4,0),B(2,0).
(1)用尺規(guī)作圖作出點(diǎn)C,并求出點(diǎn)C的坐標(biāo);
(2)求△ABC的面積.
【答案】(1)作圖見解析,點(diǎn)C的坐標(biāo)為或;(2).
【解析】
(1)根據(jù)等邊三角形的性質(zhì),分別以點(diǎn)A,B為圓心,AB的長為半徑畫弧,從而確定點(diǎn)C及其坐標(biāo);(2)根據(jù)(1)問中點(diǎn)C的坐標(biāo)和三角形的面積公式計(jì)算求解即可.
解:根據(jù)等邊三角形的性質(zhì),分別以點(diǎn)A,B為圓心,AB的長為半徑畫弧j交于點(diǎn)C,C’;△ABC和△ABC’即為所求.
連接CC’交x軸于點(diǎn)E,根據(jù)等邊三角形三線合一的性質(zhì)可知,AE=BE,CE⊥AB
∵A(-4,0),B(2,0)
∴E(-1,0)
∴AE=BE=3
∴在Rt△ACE中,
∴點(diǎn)C的坐標(biāo)為或
(2)∵A(-4,0),B(2,0)
∴AB=6
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC=70°,以B為圓心,任意長為半徑畫弧交AB,BC于點(diǎn)E,F(xiàn),再分別以點(diǎn)E,F(xiàn)為圓心、以大于EF長為半徑畫弧,兩弧交于點(diǎn)P,作射線BP交AC于點(diǎn)D,則∠BDC為( 。┒龋
A. 65 B. 75 C. 80 D. 85
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=120°,AB=AC=4,AD⊥BC,BD=2,延長AD到E,使AE=2AD,連接BE.
(1)求證:△ABE為等邊三角形;
(2)將一塊含60°角的直角三角板PMN如圖放置,其中點(diǎn)P與點(diǎn)E重合,且∠NEM=60°,邊NE與AB交于點(diǎn)G,邊ME與AC交于點(diǎn)F.求證:BG=AF;
(3)在(2)的條件下,求四邊形AGEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,頂點(diǎn)為D,過點(diǎn)A的直線與拋物線交于點(diǎn)E,與y軸交于點(diǎn)F,且點(diǎn)B的坐標(biāo)為(3,0),點(diǎn)E的坐標(biāo)為(2,3).
(1)求拋物線的解析式;
(2)若點(diǎn)G為拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),H為x軸上一點(diǎn),當(dāng)以點(diǎn)C、G、H、F四點(diǎn)所圍成的四邊形的周長最小時(shí),求出這個(gè)最小值及點(diǎn)G、H的坐標(biāo);
(3)設(shè)直線AE與拋物線對(duì)稱軸的交點(diǎn)為P,M為直線AE上的任意一點(diǎn),過點(diǎn)M作MN∥PD交拋物線于點(diǎn)N,以P、D、M、N為頂點(diǎn)的四邊形能否為平行四邊形?若能,請(qǐng)求點(diǎn)M的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AC=BC,∠ACB=90°,點(diǎn)D在AB上,點(diǎn)E在BC上,且AD=BE,BD=AC,連DE、CD.
(1)找出圖中全等圖形,并證明;
(2)求∠ACD的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點(diǎn),AE=CF,連接EF,BF,EF與對(duì)角線AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長為( 。
A. 8 B. 8 C. 4 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩張等寬的紙條交叉疊放在一起,若重合部分構(gòu)成的四邊形ABCD中,AB=3,AC=2,則BD的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求證:相似三角形對(duì)應(yīng)邊上的中線之比等于相似比.
要求:①根據(jù)給出的△ABC及線段A'B′,∠A′(∠A′=∠A),以線段A′B′為一邊,在給出的圖形上用尺規(guī)作出△A'B′C′,使得△A'B′C′∽△ABC,不寫作法,保留作圖痕跡;
②在已有的圖形上畫出一組對(duì)應(yīng)中線,并據(jù)此寫出已知、求證和證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,≌,≌,B,E,C在一條直線上下列結(jié)論:是的平分線;;;線段DE是的中線;其中正確的有 ()個(gè).
A.2B.3C.4D.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com