【題目】某商場(chǎng)設(shè)立了一個(gè)可以自由旋轉(zhuǎn)的轉(zhuǎn)盤,并規(guī)定:顧客購(gòu)物10元以上就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),當(dāng)轉(zhuǎn)盤停止時(shí),指針落在哪一區(qū)域就可以獲得相應(yīng)的獎(jiǎng)品.下表是活動(dòng)進(jìn)行中的一組落在獎(jiǎng)品“鉛筆”區(qū)域的統(tǒng)計(jì)數(shù)據(jù):
轉(zhuǎn)動(dòng)轉(zhuǎn)盤的次數(shù) | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“鉛筆”的次數(shù) | 68 | 111 | 136 | 345 | 564 | 701 |
落在“鉛筆”的成功率 |
(1).計(jì)算并完成表格(精確到0.01);
(2).請(qǐng)估計(jì),當(dāng)很大時(shí),落在“鉛筆”區(qū)域的頻率將會(huì)接近______(精確到0.1).
(3).假如你去轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次,你獲得鉛筆的成功率約是______.
【答案】(1)
轉(zhuǎn)動(dòng)轉(zhuǎn)盤的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“鉛筆”的次數(shù)m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“鉛筆”的成功率 | 0.68 | 0.74 | 0.68 | 0.69 | 0.71 | 0.70 |
(2)0.7;(3)70%;
【解析】
(1)根據(jù)頻率的算法,頻率=頻數(shù)總數(shù),可得各個(gè)頻率;填空即可;
(2)根據(jù)頻率的定義,可得當(dāng)n很大時(shí),頻率將會(huì)接近其概率;
(3)根據(jù)概率的意義可得答案;
(1)
轉(zhuǎn)動(dòng)轉(zhuǎn)盤的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“鉛筆”的次數(shù)m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“鉛筆”的成功率 | 0.68 | 0.74 | 0.68 | 0.69 | 0.71 | 0.70 |
(2)根據(jù)題意可知,當(dāng)n很大時(shí),頻率將會(huì)接近0.7;
(3)獲得鉛筆的概率約是70%;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,AD是經(jīng)過A點(diǎn)的一條直線,且B、C在AD的兩側(cè),BD⊥AD于D,CE⊥AD于E,交AB于點(diǎn)F,CE=10,BD=4,則DE的長(zhǎng)為( 。
A. 6B. 5C. 4D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,AB=2,且∠ABC=∠ABE=60°,M為對(duì)角線BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM,則AM+BM+CM的最小值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與反比例函數(shù)的圖像交于第一、三象限內(nèi)的、兩點(diǎn),與軸交于點(diǎn),點(diǎn)在軸負(fù)半軸上,,且四邊形是平行四邊形,點(diǎn)的縱坐標(biāo)為.
(1)求該反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)連接,求的面積;
(3)直接寫出關(guān)于的不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上,點(diǎn)A表示1,現(xiàn)將點(diǎn)A沿?cái)?shù)軸做如下移動(dòng):第一次將點(diǎn)A向左移動(dòng)3個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A1,第二次將點(diǎn)A向右移動(dòng)6個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A2,第三次將點(diǎn)A2向左移動(dòng)9個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A3,按照這種移動(dòng)規(guī)律移動(dòng)下去,第n次移動(dòng)到點(diǎn)An,如果點(diǎn)An與原點(diǎn)的距離不小于20,那么n的最小值是( 。
A. 12B. 13C. 14D. 15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠B=∠3,∠BCD=80°,求∠ADC的度數(shù).
解:∵∠1+∠2=180°,(已知)
∴ ∥ .( )
∴∠B=∠DEC.( )
∵∠B=∠3,(已知)
∴
∴AD∥BC,( )
∴ (兩直線平行,同旁內(nèi)角互補(bǔ))
∵∠BCD=80°,
∴∠ADC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)對(duì)今年端午節(jié)這天銷售A、B、C三種品牌粽子的情況進(jìn)行統(tǒng)計(jì),并繪制出了如圖1和圖2所示的統(tǒng)計(jì)圖,根據(jù)圖中信息解答下列問題:
(1)這天共銷售了多少個(gè)粽子?
(2)銷售B品牌粽子多少個(gè)?并補(bǔ)全圖1中的條形圖;
(3)求出A品牌粽子在圖2中所對(duì)應(yīng)的圓心角的度數(shù);
(4)根據(jù)上述統(tǒng)計(jì)信息,明年端午節(jié)期間該商場(chǎng)對(duì)A、B、C三種品牌的粽子如何進(jìn)貨?請(qǐng)你提一條合理化的建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鄰邊不相等的平行四邊形紙片,剪去一個(gè)菱形,余下一個(gè)四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個(gè)菱形,又剩下一個(gè)四邊形,稱為第二次操作;…依此類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準(zhǔn)菱形.如圖,ABCD中,若AB=1,BC=2,則ABCD為1階準(zhǔn)菱形.
(1)判斷與推理:
①鄰邊長(zhǎng)分別為2和3的平行四邊形是 階準(zhǔn)菱形;
②小明為了剪去一個(gè)菱形,進(jìn)行了如下操作:如圖,把ABCD沿BE折疊(點(diǎn)E在AD上),使點(diǎn)A落在BC邊上的點(diǎn)F,得到四邊形ABFE.請(qǐng)證明四邊形ABFE是菱形.
(2)操作、探究與計(jì)算:
①已知ABCD的鄰邊長(zhǎng)分別為1,a(a>1),且是3階準(zhǔn)菱形,請(qǐng)畫出ABCD及裁剪線的示意圖,并在圖形下方寫出a的值;
②已知ABCD的鄰邊長(zhǎng)分別為a,b(a>b),滿足a=6b+r,b=5r,請(qǐng)寫出ABCD是幾階準(zhǔn)菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交軸,軸于A,B兩點(diǎn),點(diǎn)C為OB的中點(diǎn),點(diǎn)D在第二象限,且四邊形AOCD為矩形.
(1)直接寫出點(diǎn)A,B的坐標(biāo),并求直線AB與CD交點(diǎn)E的坐標(biāo);
(2)動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿線段CD以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)D運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)N從點(diǎn)A出發(fā),沿線段AO以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)O運(yùn)動(dòng),過點(diǎn)P作,垂足為H,連接NP.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為秒.
①若△NPH的面積為1,求的值;
②點(diǎn)Q是點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱點(diǎn),問是否有最小值,如果有,求出相應(yīng)的點(diǎn)P的坐標(biāo);如果沒有,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com