【題目】給出下列函數(shù):①; ②; ③.從中任取一個函數(shù),取出的函數(shù)符合條件“當(dāng)時,函數(shù)值增大而減小”的概率是( ).

A. B. C. D.

【答案】B

【解析】分析:

根據(jù)三個函數(shù)解析式結(jié)合函數(shù)的特點(diǎn)分析可知當(dāng)x>1時,第1個函數(shù)的函數(shù)值yx的增大而增大;第2個函數(shù)的函數(shù)值yx的增大而減。坏3個函數(shù)的函數(shù)值yx的增大而減。挥纱思纯汕蟮盟蟾怕.

詳解

(1)在函數(shù),當(dāng)x>1時,函數(shù)關(guān)系式為y=3x-1中,yx的增大而增大;

(2函數(shù) 的圖象在第一、三象限,當(dāng)x>1時,yx的增大而減;

(3)在函數(shù)y=-3x2中,由于函數(shù)圖象開口向下,對稱軸為y軸,因此該函數(shù)中,當(dāng)x>1時,yx的增大而減小

∴在上述三個函數(shù)中,當(dāng)x>1,yx的增大而減小的有2個,

從上述三個函數(shù)中任取一個函數(shù),取出的函數(shù)符合條件“當(dāng)x>1時,yx的增大而減小”的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OAOBABx軸于點(diǎn)C,點(diǎn)A,1)在反比例函數(shù)的圖象上.

1)求反比例函數(shù)的表達(dá)式;

2)在x軸的負(fù)半軸上存在一點(diǎn)P,使得SAOP=SAOB,求點(diǎn)P的坐標(biāo);

3)若將△BOA繞點(diǎn)B按逆時針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形紙片ABCD中,AB6 cmBC8 cm,點(diǎn)EBC邊上一點(diǎn),連接AE,并將AEB沿AE折疊,得到AEB′,以CE,B′為頂點(diǎn)的三角形是直角三角形時,BE的長為____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=-2x+2的圖象與軸、軸分別交于點(diǎn),以線段為直角邊在第一象限內(nèi)作等腰直角三角形ABC,且,則點(diǎn)C坐標(biāo)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形一個內(nèi)角的平分線把矩形的一邊分成,則矩形的周長為(

A. B. C. D. 以上都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理是人類最偉大的十個科學(xué)發(fā)現(xiàn)之一,西方國家稱之為畢達(dá)哥拉斯定理,但遠(yuǎn)在畢達(dá)哥拉斯出生之前,這一定理早已被人們所利用,世界上各個文明古國都對勾股定理的發(fā)現(xiàn)和研究作出過貢獻(xiàn)(希臘、中國、埃及、巴比倫、印度等),特別是定理的證明,據(jù)說有400余種方法.其中在《幾何原本》中有一種證明勾股定理的方法:如圖所示,作CG⊥FH,垂足為G,交AB于點(diǎn)P,延長FA交DE于點(diǎn)S,然后將正方形ACED、正方形BCNM作等面積變形,得S正方形ACED=SACQS,S正方形BCNM=SBCQT,這樣就可以完成勾股定理的證明.對于該證明過程,下列結(jié)論錯誤的是( 。

A. △ADS≌△ACB B. SACQS=S矩形APGF

C. SCBTQ=S矩形PBHG D. SE=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們可用表示以為自變量的函數(shù),如一次函數(shù),可表示為,且,,定義:若存在實(shí)數(shù),使成立,則稱的不動點(diǎn),例如:,令,得,那么的不動點(diǎn)是1.

1)已知函數(shù),求的不動點(diǎn).

2)函數(shù)是常數(shù))的圖象上存在不動點(diǎn)嗎?若存在,請求出不動點(diǎn);若不存在,請說明理由;

3)已知函數(shù)),當(dāng)時,若一次函數(shù)與二次函數(shù)的交點(diǎn)為,即兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動點(diǎn),且兩點(diǎn)關(guān)于直線對稱,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A、B、C是直線l上的三個點(diǎn),線段AB8厘米.

1)若AB2BC,求線段AC的長度;

2)若點(diǎn)C是線段AB的中點(diǎn),點(diǎn)P、Q是直線l上的兩個動點(diǎn),點(diǎn)P的速度為1厘米/秒,點(diǎn)Q的速度為2厘米/秒.點(diǎn)P、Q分別從點(diǎn)CB同時出發(fā)在直線上運(yùn)動,則經(jīng)過多少秒時線段PQ的長為5厘來?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為直徑,AB=4,C、D為圓上兩個動點(diǎn),NCD中點(diǎn),CMABM,當(dāng)C、D在圓上運(yùn)動時保持∠CMN=30°,則CD的長( 

A. C、D的運(yùn)動位置而變化,且最大值為4 B. C、D的運(yùn)動位置而變化,且最小值為2

C. C、D的運(yùn)動位置長度保持不變,等于2 D. C、D的運(yùn)動位置而變化,沒有最值

查看答案和解析>>

同步練習(xí)冊答案