【題目】如圖,一次函數(shù)y=-2x+2的圖象與軸、軸分別交于點(diǎn)、,以線段為直角邊在第一象限內(nèi)作等腰直角三角形ABC,且,則點(diǎn)C坐標(biāo)為_____.

【答案】(3,1);

【解析】

先求出點(diǎn)A,B的坐標(biāo),再判斷出ABO≌△CAD,即可求出AD=2,CD=1,即可得出結(jié)論;

如圖,過點(diǎn)CCDx軸于D,

x=0,得y=2,

y=0,得x=1,

A(1,0),B(0,2)

OA=1,OB=2

∵△ABC是等腰直角三角形,

AB=AC,BAC=90°,

∴∠BAO+CAD=90°

∵∠ACD+CAD=90°,

∴∠BAO=ACD

∵∠BOA=ADC=90°,

∴△ABO≌△CAD

AD=BO=2,CD=AO=1,

OD=3,

C(3,1);

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O為直線AB上的一點(diǎn),COE是直角,OF平分AOE(圖中所說的角都是小于平角的角).

1)如圖1,若COF58°,求BOE的度數(shù);

2)將COE繞點(diǎn)O順時針旋轉(zhuǎn)到如圖2所示的位置時,若COFm°,求BOE的度數(shù)(用含字母m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y=ax2+bxa≠0)經(jīng)過A(6,0)、B(8,8)兩點(diǎn).

(1)求拋物線的解析式;

(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個公共點(diǎn)D,求m的值及點(diǎn)D的坐標(biāo);

(3)如圖2,若點(diǎn)N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,在坐標(biāo)平面內(nèi)有點(diǎn)P,求出所有滿足△POD∽△NOB的點(diǎn)P坐標(biāo)(點(diǎn)P、O、D分別與點(diǎn)N、OB對應(yīng)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知把直線y=kx+b(k≠0)沿著y軸向上平移3個單位后,得到直線y=﹣2x+5.

(1)求直線y=kx+b(k≠0)的解析式;

(2)求直線y=kx+b(k≠0)與坐標(biāo)軸圍成的三角形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52,…

(1)請根據(jù)你發(fā)現(xiàn)的規(guī)律填空:6×8+1=(   2;

(2)用含n的等式表示上面的規(guī)律:   

(3)用找到的規(guī)律解決下面的問題:

計(jì)算:(1+)(1+)(1+)(1+)…(1+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)A(6 ,0),點(diǎn)B(0,18),BAO=60°,射線AC平分∠BAOy軸正半軸于點(diǎn)C.

(1)求點(diǎn)C的坐標(biāo);

(2)點(diǎn)N從點(diǎn)A以每秒2個單位的速度沿線段AC向終點(diǎn)C運(yùn)動,過點(diǎn)Nx軸的垂線,分別交線段AB于點(diǎn)M,交線段AO于點(diǎn)P,設(shè)線段MP的長度為d,點(diǎn)P的運(yùn)動時間為t,請求出dt的函數(shù)關(guān)系式(直接寫出自變量t的取值范圍);

(3)(2)的條件下,將△ABO沿y軸翻折,點(diǎn)A落在x軸正半軸上的點(diǎn)E,線段BE交射線AC于點(diǎn)D,點(diǎn)Q為線段OB上的動點(diǎn),當(dāng)△AMN與△OQD全等時,求出t值并直接寫出此時點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出下列函數(shù):①; ②; ③.從中任取一個函數(shù),取出的函數(shù)符合條件“當(dāng)時,函數(shù)值增大而減小”的概率是( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)碼產(chǎn)品專賣店的一塊攝像機(jī)支架如圖所示,將該支架打開立于地面MN上,主桿AC與地面垂直,調(diào)節(jié)支架使得腳架BE與主桿AC的夾角∠CBE=45°,這時支架CD與主桿AC的夾角∠BCD恰好等于60°,若主桿最高點(diǎn)A到調(diào)節(jié)旋鈕B的距離為40cm.支架CD的長度為30cm,旋轉(zhuǎn)鈕D是腳架BE的中點(diǎn),求腳架BE的長度和支架最高點(diǎn)A到地面的距離.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=k1x+b與雙曲線y=交于A、B兩點(diǎn),其橫坐標(biāo)分別為1和5,則不等式k1x<+b的解集是_____

查看答案和解析>>

同步練習(xí)冊答案