【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為2的正方形ABCD關(guān)于y軸對(duì)稱,邊AD在x軸上,點(diǎn)B在第四象限,直線BD與反比例函數(shù)的圖象交于點(diǎn)B、E.

(1)求反比例函數(shù)及直線BD的解析式;

(2)求點(diǎn)E的坐標(biāo).

【答案】1y=y=x1;(2E2,1).

【解析】解:

(1)∵邊長(zhǎng)為2的正方形ABCD關(guān)于y軸對(duì)稱,邊ADx軸上,點(diǎn)B在第四象限,

∴A(1,0),D(1,0),B(1,-2)

反比例函數(shù)的圖象過(guò)點(diǎn)B,

解得m=-2,

反比例函數(shù)的解析式為

設(shè)直線BD的解析式為ykxb,

∵ykxb的圖象過(guò)B,D兩點(diǎn),

解得

直線BD的解析式為y=-x1

(2)直線BD與反比例函數(shù)的圖象交于點(diǎn)B,E,

解得

∵B(1,-2)

∴E(2,1)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,甲、乙、丙、丁、戊五名同學(xué)有以下說(shuō)法:甲說(shuō):直線BC不過(guò)點(diǎn)A”;乙說(shuō):點(diǎn)A在直線CD; 丙說(shuō):“D在線段CB的反向延長(zhǎng)線上;丁說(shuō):“A,B,C,D兩兩連結(jié),有5條線段; 戊說(shuō):射線AD與射線CD不相交 其中說(shuō)明正確的有( ).

A. 3B. 4C. 5D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對(duì)應(yīng)的數(shù)為-10,B點(diǎn)對(duì)應(yīng)的數(shù)為90.

(1)請(qǐng)寫(xiě)出與A,B兩點(diǎn)距離相等的M點(diǎn)對(duì)應(yīng)的數(shù); 

(2)現(xiàn)在有一只電子螞蟻PB點(diǎn)出發(fā)時(shí),以3個(gè)單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,求C點(diǎn)對(duì)應(yīng)的數(shù)是多少.

(3)若當(dāng)電子螞蟻PB點(diǎn)出發(fā)時(shí),以3個(gè)單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)的時(shí)間兩只電子螞蟻在數(shù)軸上相距35個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD=4,EAB的中點(diǎn),PAC上一個(gè)動(dòng)點(diǎn),則EP+BP的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們把順次連接四邊形各邊中點(diǎn)所得的四邊形叫做中點(diǎn)四邊形.若一個(gè)任意四邊形的面積為a,則它的中點(diǎn)四邊形面積為(

A.aB. C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形EFGH的頂點(diǎn)EG分別在菱形ABCD的邊AD,BC上,頂點(diǎn)F,H在菱形ABCD的對(duì)角線BD上.

1)求證:BG=DE;

2)若EAD中點(diǎn),FH=2,求菱形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(1)﹣71;

2)(﹣3+(﹣5)﹣(+11)﹣(﹣17);

3)﹣3+87;

4)(×(﹣24);

5)(×(﹣12);

6)(﹣0.1)﹣(﹣8+(﹣11)﹣(﹣);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形OABC的頂點(diǎn)A的坐標(biāo)為(4,3),點(diǎn)D是邊OC上的一點(diǎn),點(diǎn)E在直線OB上,連接DE、CE,則DE+CE的最小值為(  )

A. 5B. +1C. 2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PO外一點(diǎn),PAPB分別切OA,BCDO于點(diǎn)E,分別交PA,PB于點(diǎn)CD.若PA=5,則PCD的周長(zhǎng)和COD分別為(  )

A. 5, 90°+P B. 790°+ C. 10,90°-P D. 1090°+P

查看答案和解析>>

同步練習(xí)冊(cè)答案