【題目】已知拋物線 y x2 mx 2m 4(m>0).
(1)證明:該拋物線與 x 軸總有兩個不同的交點;
(2)設該拋物線與 x 軸的兩個交點分別為 A,B(點 A 在點 B 的右側(cè)),與 y 軸交于點 C,A,B,三點都在圓 P 上.
①若已知 B(-3,0),拋物線上存在一點 M 使△ABM 的面積為 15,求點 M 的坐標;
②試判斷:不論 m 取任何正數(shù),圓 P 是否經(jīng)過 y 軸上某個定點?若是,求出該定點的坐標,若不是,說明理由.
【答案】(1)見解析;(2)①M或或或;②是,圓 P經(jīng)過 y 軸上的定點(0,1).
【解析】
(1)令y=0,證明,即可解答;
(2)①將B(-3,0)代入y x2 mx 2m 4,求出拋物線解析式,求出點A的坐標,從而得到AB=5,根據(jù)△ABM 的面積為 15,列出方程解答即可;
②求出OA=2,OB=m+2,OC=2(m+2),判斷出∠OCB=∠OAF,求出tan∠OCB=,即可求出OF=1,即可得出結(jié)論.
解:(1)當y=0時,x2 mx 2m 4=0
∴,
∵m>0,
∴,
∴該拋物線與 x 軸總有兩個不同的交點;
(2)①將B(-3,0)代入y x2 mx 2m 4得:
,解得m=1,
∴y x2 x 6,
令y=0得:x2 x 6=0,解得:,
∴A(2,0),AB=5,
設M(n,n2 n 6)
則,即
解得:,
∴M或或或.
②是,圓 P經(jīng)過 y 軸上的定點(0,1),理由如下:
令y=0,
∴x2 mx 2m 4=0,即
,
∴或,
∴A(2,0),,
∴OA=2,OB=m+2,
令x=0,則y=-2(m+2),
∴OC=2(m+2),
如圖,∵點A,B,C在圓P上,
∴∠OCB=∠OAF,
在Rt△BOC中,,
在Rt△AOF中,,
∴OF=1,
∴點F(0,1)
∴圓 P經(jīng)過 y 軸上的定點(0,1).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=BC,以AB為直徑的半圓分別交AC、BC于點D、E兩點,BF與⊙O相切于點B,交AC的延長線于點F.
(1)求證:D是AC的中點;
(2)若AB=12,sin∠CAE=,求CF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,過點C作BC的垂線交⊙O于D,點E在BC的延長線上,且∠DEC=∠BAC.
(1)求證:DE是⊙O的切線;
(2)若AC∥DE,當AB=8,CE=2時,求⊙O直徑的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E是BC的中點,連接DE、OE.
(1)判斷DE與⊙O的位置關系并說明理由;
(2)求證:
(3)若tanC=,DE=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著通訊技術迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學興趣小組設計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:
(1)在扇統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為_____;根據(jù)這次統(tǒng)計數(shù)據(jù)了解到最受學生歡迎的溝通方式是______.
(2)將條形統(tǒng)計圖補充完整;
(3)某天甲、乙兩名同學都想從“微信”、“QQ”、“電話”三種溝通方式中選一種方式與對方聯(lián)系,用列表或畫樹狀圖的方法求出甲、乙兩名同學恰好選中同一種溝通方式的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線y=﹣x+8交x軸于點A,交y軸于點B,點C在AB上,AC=5,CD∥OA,CD交y軸于點D.
(1)求點D的坐標;
(2)點P從點O出發(fā),以每秒1個單位長度的速度沿OA勻速運動,同時點Q從點A出發(fā),以每秒個單位長度的速度沿AB勻速運動,設點P運動的時間為t秒(0<t<3),△PCQ的面積為S,求S與t之間的函數(shù)關系式;
(3)在(2)的條件下,過點Q作RQ⊥AB交y軸于點R,連接AD,點E為AD中點,連接OE,求t為何值時,直線PR與x軸相交所成的銳角與∠OED互余.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+c與x軸交于點B(4,0),與y軸交于點C,拋物線y=x2+bx+c經(jīng)過點B,C,與x軸的另一個交點為點A.
(1)求拋物線的解析式;
(2)點P是直線BC下方的拋物線上一動點,求四邊形ACPB的面積最大時點P的坐標;
(3)若點M是拋物線上一點,請直接寫出使∠MBC=∠ABC的點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD的一個角翻折,使得點D恰好落在BC邊上的點G處,折痕為EF,若EB為∠AEG的平分線,EF和BC的延長線交于點H.下列結(jié)論中:①∠BEF=90°;②DE=CH;③BE=EF;④△BEG和△HEG的面積相等;⑤若,則.以上命題,正確的有( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨18噸,2輛大貨車與6輛小貨車一次可以運貨17噸.
(1)請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸?
(2)目前有33噸貨物需要運輸,貨運公司擬安排大小貨車共計10輛,全部貨物一次運完,其中每輛大貨車一次運費花費130元,每輛小貨車一次運貨花費100元,請問貨運公司應如何安排車輛最節(jié)省費用?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com