【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,BD是中線,AF⊥BD,F(xiàn)為垂足,過點C作AB的平行線交AF的延長線于點E.
求證:(1)∠ABD=∠FAD;(2)AB=2CE.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)根據(jù)同角的余角相等即可證明結(jié)論;(2)利用ASA證明△BAD≌△ACE,即可得AD=CE;再由AC=2AD=2CE即可得AB=2CE.
證明:(1)∵∠BAC=90°,
∴∠FAD+∠BAF=90°.
∵AF⊥BD,
∴在Rt△ABF中,∠ABD+∠BAF=90°,
∴∠ABD=∠FAD.
(2)∵CE∥AB,∠BAC=90°,∴∠ACE=90°,
在△BAD和△ACE中,
∵∠ABD=∠CAE,AB=CA,∠BAC=∠ACE=90°,
∴△BAD≌△ACE(ASA),
∴AD=CE.
∵BD為△ABC中AC邊上的中線.
∴AC=2AD,
∴AC=2CE.
又∵AB=AC,
∴AB=2CE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知△ABC.
(1)請用尺規(guī)作圖法作出BC的垂直平分線DE,垂足為D,交AC于點E, (保留作圖痕跡,不寫作法);
(2)請用尺規(guī)作圖法作出∠C的角平分線CF,交AB于點F,(保留作圖痕跡,不寫作法);
(3)請用尺規(guī)作圖法在BC上找出一點P,使△PEF的周長最小.(保留作圖痕跡,不寫作法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從﹣2,﹣ , ,1,3五個數(shù)中任選1個數(shù),記為a,它的倒數(shù)記為b,將a,b代入不等式組 中,能使不等式組至少有兩個整數(shù)解的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高速鐵路工程指揮部,要對某路段工程進行招標(biāo),接到了甲、乙兩個工程隊的投標(biāo)書.從投標(biāo)書中得知:甲隊單獨完成這項工程所需天數(shù)是乙隊單獨完成這項工程所需天數(shù)的:若由甲隊先做20天,剩下的工程再由甲、乙兩隊合作60天完成.
(1)求甲、乙兩隊單獨完成這項工程各需多少天?
(2)已知甲隊每天的施工費用為8.6萬元,乙隊每天的施工費用為5.4萬元,工程預(yù)算的施工費用為1000萬元.若在甲、乙工程隊工作效率不變的情況下使施工時間最短,問擬安排預(yù)算的施工費用是否夠用?若不夠用,需追加預(yù)算多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于點D,則S△ADC的值是( )
A. 10 B. 8 C. 6 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ACB=90°,D為BC的中點,DE⊥AB,垂足為E,過點B作BF∥AC交DE的延長線于點F,連接CF.
(1)求證:AD⊥CF;
(2)連接AF,試判斷△ACF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘漁船從港口A沿北偏東60°方向航行至C處時突然發(fā)生故障,在C處等待救援.有一救援艇位于港口A正東方向20(﹣1)海里的B處,接到求救信號后,立即沿北偏東45°方向以30海里/小時的速度前往C處救援.則救援艇到達C處所用的時間為( 。
A. 小時 B. 小時 C. 小時 D. 小時
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com