如圖,在Rt△ABC中,∠ACB=90°,且AB=
5
,若Rt△ABC的面積為1.則其周長(zhǎng)為
 
考點(diǎn):勾股定理
專題:
分析:首先求出AC×BC=2,再利用完全平方公式求出AC+BC,即可得出答案.
解答:解:∵Rt△ABC的面積為1,
1
2
AC×BC=1,
則AC×BC=2,
∵AB=
5
,
∴AC2+BC2=5,
即(AC+BC)2-2AC×BC=5,
故(AC+BC)2=9,
即AC+BC=3,
則其周長(zhǎng)為:3+
5

故答案為:3+
5
點(diǎn)評(píng):此題主要考查了勾股定理以及完全平方公式的應(yīng)用,得出AC+BC的值是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,BD平分∠ABC,∠ABD=50°,∠FEC=100°,證明:AB∥EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一樓高20m,一只鴿子從地面的A處沿傾斜角為30°的方向直飛樓頂?shù)腂處,則鴿子飛行的路程是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AD是△ABC的高,點(diǎn)E、G分別在AB、AC上,EF⊥BC,垂足為F,∠1+∠2=180°.∠CGD與∠BAC相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,DE是其中位線,點(diǎn)O是DE上的一個(gè)動(dòng)點(diǎn),AO延長(zhǎng)線交BC于F,當(dāng)O運(yùn)動(dòng)到DE的什么位置時(shí),四邊形ADFE為平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線MA∥NB.

(1)如圖1,點(diǎn)P在直線MA與NB之間,你能得到∠APB=∠A+∠B這個(gè)結(jié)論嗎?并說(shuō)明你的理由;
(2)如圖2,若P在兩條直線MA,NB之外,你仍能得到與第(1)題類似的結(jié)論嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,∠ABC=90°,AB=1,BC=2
2
,點(diǎn)F是BC的中點(diǎn),AE平分∠BAC,BE⊥AE于點(diǎn)E,延長(zhǎng)BE交AC于點(diǎn)D.
(1)求證:△AEB≌△AED;
(2)求EF的長(zhǎng).
(3)連接DF,求證:四邊形AEFD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

求不等式組
3x>2x-1
2(x-1)≤3
的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:1+2-3+4-5+6-7+8-9…+2006-2007+2008.

查看答案和解析>>

同步練習(xí)冊(cè)答案