如圖,在直角坐標(biāo)系中,C點(diǎn)坐標(biāo)為(0,3),A點(diǎn)在x軸上,
OC
OA
=
3
4
,二次函數(shù)y=ax2+bx+c(a>0)過A、C兩點(diǎn),圖象與x軸的另一交點(diǎn)為B,原點(diǎn)O關(guān)于BC的對(duì)稱點(diǎn)恰好在直線AC上.
(1)求A點(diǎn)的坐標(biāo).
(2)求二次函數(shù)y=ax2+bx+c的解析式.
考點(diǎn):二次函數(shù)綜合題
專題:
分析:(1)利用C點(diǎn)坐標(biāo)為(0,3),
OC
OA
=
3
4
,即可得出AO=4,進(jìn)而得出A點(diǎn)坐標(biāo)即可;
(2)利用勾股定理首先得出AC的長(zhǎng),再利用原點(diǎn)O關(guān)于BC的對(duì)稱點(diǎn)恰好在直線AC上設(shè)為D點(diǎn),得出CD=3,進(jìn)而求出AD,BD的長(zhǎng),即可求出拋物線解析式即可,注意A點(diǎn)坐標(biāo)有兩種情況.
解答:解:(1)∵C點(diǎn)坐標(biāo)為(0,3),A點(diǎn)在x軸上,
OC
OA
=
3
4
,
∴AO=4,
故A點(diǎn)坐標(biāo)有兩種情況,即A(4,0)或(-4,0);

(2)如圖1,由題意得出,∠OCA的角平分線與x軸的交點(diǎn)即為點(diǎn)B,
若點(diǎn)O在AC上的落點(diǎn)為D,
則BD⊥AC,且CD=CO=3,
∵CO=3,AO=4,
∴AC=
32+42
=5,
故AD=5-3=2,
∵∠BDA=90°,AB=4-BO=4-BD,
∴BD2+AD2=AB2,
∴BD2+22=(4-BD)2
解得:BD=
3
2
,
則B點(diǎn)坐標(biāo)為:(
3
2
,0),
設(shè)經(jīng)過A,B,C三點(diǎn)的拋物線解析式為y=ax2+bx+c,
9
4
a+
3
2
b+c=0
c=3
16a+4b+c=0
,
解得:
a=
1
2
b=-
11
4
c=3
,
故經(jīng)過A,B,C三點(diǎn)的拋物線解析式為y=
1
2
x2-
11
4
x+3,
同理如圖2,可得出,當(dāng)A′點(diǎn)坐標(biāo)為(-4,0),B′點(diǎn)坐標(biāo)為(-
3
2
,0),拋物線解析式為:y=
1
2
x2+
11
4
x+3.
點(diǎn)評(píng):此題主要考查了待定系數(shù)法求二次函數(shù)解析式以及勾股定理等知識(shí),注意根據(jù)點(diǎn)的對(duì)稱性得出B點(diǎn)坐標(biāo)是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,已知D,E分別是AB,AC上的中點(diǎn),若BC的長(zhǎng)為3cm,則DE的長(zhǎng)為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)(2,2),將直線y=kx沿射線OA方向平移4
2
個(gè)單位后,恰好經(jīng)過點(diǎn)(3,2),則不等式kx-3<x的解集為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小明沿著坡度為1:
3
的山坡向上走了1000m,則他升高了
 
m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知-2是關(guān)于x的一元二次方程
1
2
x2-mx+2=0
的一個(gè)根,則m的值是( 。
A、2
B、-2
C、-
3
2
D、
3
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

有8個(gè)棱長(zhǎng)是1的小正方體,每個(gè)正方體有三組相對(duì)的面,第一組相對(duì)面上的數(shù)字是1,第二組向?qū)γ嫔系臄?shù)字是2,第三組相對(duì)面上的數(shù)字是3.現(xiàn)在把這8個(gè)小正方體拼成一個(gè)棱長(zhǎng)是2的大正方體.問:是否有一種拼合方式,使得大正方體每一個(gè)面上的4個(gè)數(shù)字之和恰好組成六個(gè)連續(xù)的自然數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

隨著人們經(jīng)濟(jì)收入的不斷提高及汽車產(chǎn)業(yè)的快速發(fā)展,汽車已越來越多地進(jìn)入普通家庭,成為居民消費(fèi)新的增長(zhǎng)點(diǎn).據(jù)某市交通部門統(tǒng)計(jì),2007年底全市汽車擁有量為180萬輛,而截止到2009年底,全市的汽車擁有量已達(dá)216萬輛,求2007年底至2009年底該市汽車擁有量的年平均增長(zhǎng)率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若1是方程x2-2x-m=0的根,則m=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算與化簡(jiǎn):
(1)
8
+(
1
2
-1-4cos45°-(
3
-π)0           
(2)
m
m2-1
÷(1-
1
m+1
).

查看答案和解析>>

同步練習(xí)冊(cè)答案