【題目】如圖,為了測(cè)量山腳到塔頂?shù)母叨龋?/span>的長(zhǎng)),某同學(xué)在山腳處用測(cè)角儀測(cè)得塔頂的仰角為,再沿坡度為的小山坡前進(jìn)400米到達(dá)點(diǎn),在處測(cè)得塔頂的仰角為.
(1)求坡面的鉛垂高度(即的長(zhǎng));
(2)求的長(zhǎng).(結(jié)果保留根號(hào),測(cè)角儀的高度忽略不計(jì)).
【答案】(1)200;(2).
【解析】
(1) 根據(jù)AB的坡度得,再根據(jù)∠BAH的正弦和斜邊長(zhǎng)度即可解答;(2)過(guò)點(diǎn)作于點(diǎn),得到矩形,再設(shè)米,再由∠DBE=60°的正切值,用含x的代數(shù)式表示DE的長(zhǎng),而矩形中,CE=BH=200米,可得DC的長(zhǎng),米,最后根據(jù)△ADC是等腰三角形即可解答.
解:(1)在中,,∴
∴米
(2)過(guò)點(diǎn)作于點(diǎn),如圖:
∴四邊形是矩形,∴米
設(shè)米
∴在中,米
∴米
在中
∴米
在中,,∴
即
解得
∴米
(本題也可通過(guò)證明矩形是正方形求解.)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD是正方形,對(duì)角線AC,BD相交于點(diǎn)O.
(1)如圖1,點(diǎn)P是正方形ABCD外一點(diǎn),連接OP,以OP為一邊,作正方形OPMN,且邊ON與邊BC相交,連接AP,BN.
①依題意補(bǔ)全圖1;
②判斷AP與BN的數(shù)量關(guān)系及位置關(guān)系,寫(xiě)出結(jié)論并加以證明;
(2)點(diǎn)P在AB延長(zhǎng)線上,且∠APO=30°,連接OP,以OP為一邊,作正方形OPMN,且邊ON與BC的延長(zhǎng)線恰交于點(diǎn)N,連接CM,若AB=2,求CM的長(zhǎng)(不必寫(xiě)出計(jì)算結(jié)果,簡(jiǎn)述求CM長(zhǎng)的過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,放置于平面直角坐標(biāo)系中,按下面要求畫(huà)圖:
(1)畫(huà)出繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)的.
(2)求點(diǎn)在旋轉(zhuǎn)過(guò)程中的路徑長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1)所示,為矩形的邊上一點(diǎn),動(dòng)點(diǎn),同時(shí)從點(diǎn)出發(fā),點(diǎn)沿折線運(yùn)動(dòng)到點(diǎn)時(shí)停止,點(diǎn)沿運(yùn)動(dòng)到點(diǎn)時(shí)停止,它們運(yùn)動(dòng)的速度都是秒,設(shè)、同時(shí)出發(fā)秒時(shí),的面積為.已知與的函數(shù)關(guān)系圖象如圖(2)(曲線為拋物線的一部分)則下列結(jié)論正確的是( )
圖(1) 圖(2)
A.B.當(dāng)是等邊三角形時(shí),秒
C.當(dāng)時(shí),秒D.當(dāng)的面積為時(shí),的值是或秒
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,和都是等腰直角三角形,,的頂點(diǎn)與的斜邊的中點(diǎn)重合,將繞點(diǎn)旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,線段與線段相交于點(diǎn),射線與線段相交于點(diǎn),與射線相交于點(diǎn).
(1)求證:;
(2)求證:平分;
(3)當(dāng),,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O的直徑AB長(zhǎng)為12,點(diǎn)E是半徑OA的中點(diǎn),過(guò)點(diǎn)E作CD⊥AB交O于點(diǎn)C、D,點(diǎn)P在上運(yùn)動(dòng),點(diǎn)Q在線段CP上,且PQ=2CQ,則EQ的最大值是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用配方法解下列方程,其中應(yīng)在方程左右兩邊同時(shí)加上4的是( 。
A. x2﹣2x=5 B. x2+4x=5 C. 2x2﹣4x=5 D. 4x2+4x=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖中的小方格都是邊長(zhǎng)為1的正方形,△ABC的頂點(diǎn)和O點(diǎn)都在正方形的頂點(diǎn)上.
(1)以點(diǎn)O為位似中心,在方格圖中將△ABC放大為原來(lái)的2倍,得到△A1B1C1;
(2)將△A1B1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后得到的△A2B1C2;
(3)在(2)的旋轉(zhuǎn)過(guò)程中,點(diǎn)A1的運(yùn)動(dòng)路徑長(zhǎng)為 ,邊A1C1掃過(guò)的區(qū)域面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2﹣2ax+c的圖象經(jīng)過(guò)點(diǎn)C(0,﹣2),頂點(diǎn)D的坐標(biāo)為(1,﹣),與x軸交于A、B兩點(diǎn).
(1)求拋物線的解析式;
(2)連接AC,E為直線AC上一點(diǎn),當(dāng)△AOC∽△AEB時(shí),求點(diǎn)E的坐標(biāo)和的值.
(3)點(diǎn)F (0,y)是y軸上一動(dòng)點(diǎn),當(dāng)y為何值時(shí),FC+BF的值最。⑶蟪鲞@個(gè)最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com