如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的長。
小萍同學(xué)靈活運(yùn)用了軸對(duì)稱知識(shí),將圖形進(jìn)行翻折變換,巧妙地解答了此題。
(1)分別以AB、AC為對(duì)稱軸,畫出△ABD、△ACD的軸對(duì)稱圖形,D、C點(diǎn)的對(duì)稱點(diǎn)分別為E、F,延長EB、FC相交于G點(diǎn),求證:四邊形AEGF是正方形;
(2)設(shè)AD=x,利用勾股定理,建立關(guān)于x的方程模型,求出x的值。
(1)由翻折變換可得∠E=∠ADB=90°,EB=BD=2,CF=CD=3,∠F=∠ADC=90°,AE=AD,AF=AD,再結(jié)合可得四邊形AEGF為矩形,再有AE=AF=AD,即可證得結(jié)論;(2)6
【解析】
據(jù)勾股定理即可列方程求得結(jié)果.
在Rt△BGC中,
解得(不合題意,舍去)
∴AD=x=6.
考點(diǎn):翻折變換,正方形的判定,勾股定理
點(diǎn)評(píng):解答本題的關(guān)鍵是熟練掌握翻折變換的性質(zhì):翻折前后圖形的對(duì)應(yīng)邊或?qū)?yīng)角相等;有四個(gè)角是直角的四邊形是矩形,有一組鄰邊相等的矩形是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,給出下列四組條件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定這個(gè)四邊形是平行四邊形的條件有
A.1組 B.2組 C.3組 D.4組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB為⊙O的直徑,弦CD與AB相交于E,DE=EC,過點(diǎn)B的切線與AD的延長線交于F,過E作EG⊥BC于G,延長GE交AD于H.
(1)求證:AH=HD;
(2)若AE:AD=,DF=9,求⊙O的半徑。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線:的頂點(diǎn)在坐標(biāo)軸上.
(1)求的值;
(2)時(shí),拋物線向下平移個(gè)單位后與拋物線:關(guān)于軸對(duì)稱,且過點(diǎn),求的函數(shù)關(guān)系式;
(3)時(shí),拋物線的頂點(diǎn)為,且過點(diǎn).問在直線 上是否存在一點(diǎn)使得△的周長最小,如果存在,求出點(diǎn)的坐標(biāo), 如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將菱形ABCD沿對(duì)角線AC剪開,再把△ACD沿CA方向平移得到△A1C1D1,連結(jié)AD1、BC1.若∠ACB=30°,AB=2,CC1=x,△ACD與△A1C1D1重疊部分的面積為s,則下列結(jié)論:
①△A1AD1≌△CC1B;
②當(dāng)四邊形ABC1D1是矩形時(shí),x=;
③當(dāng)x=2時(shí),△BDD1為等腰直角三角形;
④(0<x<)。
其中正確的是 (填序號(hào))。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,一次函數(shù)y=2x+2的圖象與x軸交于A,與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(a,0),(其中a>0),直線l過動(dòng)點(diǎn)M(0,m)(0<m<2),且與x軸平行,并與直線AC、BC分別相交于點(diǎn)D、E,P點(diǎn)在y軸上(P點(diǎn)異于C點(diǎn))滿足PE=CE,直線PD與x軸交于點(diǎn)Q,連接PA.
(1)寫出A、C兩點(diǎn)的坐標(biāo);
(2)當(dāng)0<m<1時(shí),若△PAQ是以P為頂點(diǎn)的倍邊三角形(注:若△HNK滿足HN=2HK,則稱△HNK為以H為頂點(diǎn)的倍邊三角形),求出m的值;
(3)當(dāng)1<m<2時(shí),是否存在實(shí)數(shù)m,使CD•AQ=PQ•DE?若能,求出m的值(用含a的代數(shù)式表示);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:如圖一,拋物線與x軸正半軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線經(jīng)過A、C兩點(diǎn),且AB=2.
(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點(diǎn)開始以每秒1個(gè)單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點(diǎn)E,D,同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BO方向以每秒2個(gè)單位速度運(yùn)動(dòng),(如圖2);當(dāng)點(diǎn)P運(yùn)動(dòng)到原點(diǎn)O時(shí),直線DE與點(diǎn)P都停止運(yùn)動(dòng),連DP,若點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒 ;設(shè),當(dāng)t 為何值時(shí),s有最小值,并求出最小值。
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點(diǎn)的三角形與△ABC相似;若存在,求t的值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com