【題目】已知.在RtOAB中,∠OAB=90°,∠BOA=30°,OA=2,若以O為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)B在第一象限內(nèi),將RtOAB沿OB折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處.

1)求經(jīng)過點(diǎn)O,CA三點(diǎn)的拋物線的解析式.

2)若點(diǎn)M是拋物線上一點(diǎn),且位于線段OC的上方,連接MO、MC,問:點(diǎn)M位于何處時(shí)三角形MOC的面積最大?并求出三角形MOC的最大面積.

3)拋物線上是否存在一點(diǎn)P,使∠OAP=BOC?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】1y=x2+2x;(2,;(3)存在,P(,)(,﹣)

【解析】

1)根據(jù)折疊的性質(zhì)可得OC=OA,∠BOC=BAO=30°,過點(diǎn)CCDOAD,求出OD、CD,然后寫出點(diǎn)C的坐標(biāo),再利用待定系數(shù)法求二次函數(shù)解析式解答;
2)求出直線OC的解析式,根據(jù)點(diǎn)MOC的最大距離時(shí),面積最大;平行于OC的直線與拋物線只有一個(gè)交點(diǎn),利用根的判別式求出m的值,利用銳角三角函數(shù)的定義求解即可;
3)分兩種情況求出直線APy軸的交點(diǎn)坐標(biāo),然后求出直線AP的解析式,與拋物線解析式聯(lián)立求解即可得到點(diǎn)P的坐標(biāo).

解:(1)∵RtOAB沿OB折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處,

OC=OA=2,∠BOC=BAO=30°,

∴∠AOC=30°+30°=60°

過點(diǎn)CCDOAD,

OD=×2=,

CD=2×=3,

所以,頂點(diǎn)C的坐標(biāo)為(,3),

設(shè)過點(diǎn)O,CA拋物線的解析式為為y=ax2+bx,

,

解得:,

∴拋物線的解析式為y=x2+2x;

2)∵C,3),

∴直線OC的解析式為:,

設(shè)點(diǎn)MOC的最大距離時(shí),平行于OC的直線解析式為,
聯(lián)立,
消掉未知數(shù)y并整理得,,
=2-4m=0,
解得:m=


∴點(diǎn)MOC的最大距離=×sin30°=;

,

;

此時(shí),M,最大面積為;

3)∵∠OAP=BOC=BOA =30°,

,

∴直線APy軸的交點(diǎn)坐標(biāo)為(0,2)或(0,﹣2),

當(dāng)直線AP經(jīng)過點(diǎn)(,0)、(0,2)時(shí),解析式為,

聯(lián)立,

解得,

所以點(diǎn)P的坐標(biāo)為(,),

當(dāng)直線AP經(jīng)過點(diǎn)(,0)、(0,﹣2)時(shí),解析式為

聯(lián)立

解得;

所以點(diǎn)P的坐標(biāo)為(,).

綜上所述,存在一點(diǎn)P,)或(﹣,﹣),使∠OAP=BOA

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線ACBD交于點(diǎn)O,分別過點(diǎn)C. DCE∥BD,DE∥AC,CEDE交于點(diǎn)E.

(1)求證:四邊形ODEC是矩形;

(2)當(dāng)∠ADB=60°,AD=2時(shí),求EA的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年初新冠肺炎疫情爆發(fā)以來,國內(nèi)經(jīng)濟(jì)--度被按下暫停鍵,如今隨著國內(nèi)疫情防控形勢持續(xù)向好,各地開始進(jìn)人積極復(fù)工復(fù)產(chǎn)的新模式.某商家為降低疫情帶來的影響,刺激消費(fèi),吸引顧客,特此設(shè)計(jì)了一個(gè)游戲,其規(guī)則是:分別轉(zhuǎn)動(dòng)如圖所示的兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤各一次,每次指針落在每一字母區(qū)域的機(jī)會(huì)均等(若指針恰好落在分界線上則重轉(zhuǎn)),當(dāng)兩個(gè)轉(zhuǎn)盤的指針?biāo)缸帜赶嗤瑫r(shí),消費(fèi)者就可以獲得一次八折優(yōu)惠價(jià)購買商品的機(jī)會(huì).

1)用樹狀圖或列表的方法表示出游戲可能出現(xiàn)的所有結(jié)果;

2)若小亮參加一次游戲,則他能獲得八折優(yōu)惠價(jià)購買商品的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子里裝有3個(gè)分別寫有數(shù)字﹣2,0,1的小球,它們除了數(shù)字不同以外其余完全相同,先從盒子里隨機(jī)抽取1個(gè)小球,再從剩下的小球中抽取1個(gè),將這兩個(gè)小球上的數(shù)字依次記為a,b,則滿足關(guān)于x的方程x2+ax+b0有實(shí)數(shù)根的概率為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為4A、B、C均是⊙O的點(diǎn),點(diǎn)D是∠BAC的平分線與⊙O的交點(diǎn),若∠BAC=120°,則弦BD的長為 _____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3

1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為   ;

2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】駱駝被稱為沙漠之舟,它的體溫隨時(shí)間的變化而發(fā)生較大變化,其體溫()與時(shí)間(小時(shí))之間的關(guān)系如圖1所示.

小清同學(xué)根據(jù)圖1繪制了圖2,則圖2中的變量有可能表示的是( ).

A.駱駝在時(shí)刻的體溫與0時(shí)體溫的絕對(duì)差(即差的絕對(duì)值)

B.駱駝從0時(shí)到時(shí)刻之間的最高體溫與當(dāng)日最低體溫的差

C.駱駝在時(shí)刻的體溫與當(dāng)日平均體溫的絕對(duì)差

D.駱駝從0時(shí)到時(shí)刻之間的體溫最大值與最小值的差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰△ABC,∠ACB=120°,P是線段CB上一動(dòng)點(diǎn)(與點(diǎn)C,B不重合),連接AP,延長BC至點(diǎn)Q,使得∠PAC=QAC,過點(diǎn)Q作射線QH交線段APH,交AB于點(diǎn)M,使得∠AHQ=60°.

1)若∠PAC,求∠AMQ的大。ㄓ煤α的式子表示);

2)用等式表示線段QCBM之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為個(gè)單位長度的小正方形組成的的網(wǎng)格中,給出了格點(diǎn)(網(wǎng)格線的交點(diǎn))為端點(diǎn)的線段

(1)將線段通過平移使得點(diǎn)和點(diǎn)重合,點(diǎn)的對(duì)應(yīng)點(diǎn)為,則應(yīng)該先將線段 平移個(gè)單位,再向上平移 個(gè) 單位,畫出平移后對(duì)應(yīng)的線段;

(2)將線段點(diǎn)按順時(shí)針方向旋轉(zhuǎn)點(diǎn)的對(duì)應(yīng)點(diǎn)為 ,畫出線段

(3)填空:

查看答案和解析>>

同步練習(xí)冊(cè)答案