【題目】如圖,添加下列一個(gè)條件,不能使△ADE∽△ACB的是( ).

A. DE∥BCB. ∠AED∠BC. D. ∠ADE∠C

【答案】A

【解析】

試題相似三角形的判定有三種方法:三邊法:三組對(duì)應(yīng)邊的比相等的兩個(gè)三角形相似;兩邊及其夾角法:兩組對(duì)應(yīng)邊的比相等且夾角對(duì)應(yīng)相等的兩個(gè)三角形相似;兩角法:有兩組角對(duì)應(yīng)相等的兩個(gè)三角形相似。由此可得出可添加的條件:由題意得,∠A=∠A(公共角),則添加:∠ADE=∠ACB∠AED=∠ABC,利用兩角法可判定△ADE∽△ACB;故BD正確,添加:,利用兩邊及其夾角法可判定△ADE∽△ACB,故C選項(xiàng)正確,當(dāng)DE∥BC時(shí),△ADE∽△ABCADAB是對(duì)應(yīng)邊,故從對(duì)應(yīng)關(guān)系來看應(yīng)選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△中,,是邊上的中線,于點(diǎn),交于點(diǎn).

(1)求證:

(2)過點(diǎn)的延長線于點(diǎn).求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為米,中午時(shí)不能擋光. 如圖,某舊樓的一樓窗臺(tái)高1米,要在此樓正南方米處再建一幢新樓. 已知該地區(qū)冬天中午時(shí)陽光從正南方照射,并且光線與水平線的夾角最小為°,在不違反規(guī)定的情況下,請問新建樓房最高_____________. (結(jié)果精確到1.,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C=90°,AB=4,F是線段AC上一點(diǎn),過點(diǎn)A的⊙FAB于點(diǎn)D,E是線段BC上一點(diǎn),且ED=EB,則EF的最小值為_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=BC=2,ABC=120°,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1BAC于點(diǎn)E,A1C1分別交AC、BCD、F兩點(diǎn).

(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段BEBF有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;

(2)如圖2,當(dāng)α=30°時(shí),試判斷四邊形BC1DA的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以半圓中的一條弦BC(非直徑)為對(duì)稱軸將弧BC折疊后與直徑AB交于點(diǎn)D,若,且AB10,則CB的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,二次函數(shù)的圖象與x軸交于AB兩點(diǎn),其中A點(diǎn)坐標(biāo)為,點(diǎn),另拋物線經(jīng)過點(diǎn),M為它的頂點(diǎn).

求拋物線的解析式;

的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2-2m+3x+m2+2=0
1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
2)若方程的兩個(gè)根分別為x1、x2,且滿足x12+x22=31+x1x2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,ABAD,把矩形沿對(duì)角線AC所在直線折疊,使點(diǎn)B落在點(diǎn)E處,AECD于點(diǎn)F,連接DE

1)求證:△ADE≌△CED;

2)求證:△DEF是等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案