【題目】如圖是小花在一次放風(fēng)箏活動(dòng)中某時(shí)段的示意圖,她在A處時(shí)的風(fēng)箏線(整個(gè)過(guò)程中風(fēng)箏線近似地看作直線)與水平線構(gòu)成30°角,線段AA1表示小花身高1.5米,當(dāng)她從點(diǎn)A跑動(dòng)9米到達(dá)點(diǎn)B處時(shí),風(fēng)箏線與水平線構(gòu)成45°角,此時(shí)風(fēng)箏到達(dá)點(diǎn)E處,風(fēng)箏的水平移動(dòng)距離CF=10米,這一過(guò)程中風(fēng)箏線的長(zhǎng)度保持不變,求風(fēng)箏原來(lái)的高度C1D.
【答案】風(fēng)箏原來(lái)的高度為米.
【解析】
設(shè)AF=x,則BF=AB+AF=9+x,在Rt△BEF中求得AD=BE=,由cos∠CAD=,然后建立關(guān)于x的方程,解之求得x的值,確定AD的長(zhǎng),最后由CD= A Dsin∠CAD即可求出C1D.
解:設(shè)AF=x,則BF=AB+AF=9+x,
在Rt△BEF中,BE=,
由題意知AD=BE=18+x,
∵CF=10,
∴AC=AF+CF=10+x,
由cos∠CAD=可得 ,
解得:x=3 +2,
則AD=18+(3+2)=24+2,
∴CD=ADsin∠CAD=(24+2)×=12+,
則C1D=CD+C1C=12++=+;
答:風(fēng)箏原來(lái)的高度C1D為(+)米
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】遠(yuǎn)承中學(xué)為了了解學(xué)生對(duì)新聞、體育、動(dòng)畫(huà)、娛樂(lè)、戲曲五類(lèi)電視節(jié)目的喜愛(ài)情況,隨機(jī)抽取了本校部分學(xué)生進(jìn)行問(wèn)卷調(diào)查(必選且只選一類(lèi)節(jié)目),將調(diào)查結(jié)果進(jìn)行整理后,繪制了如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,其中喜愛(ài)體育節(jié)目的學(xué)生人數(shù)比喜愛(ài)戲曲節(jié)目的學(xué)生人數(shù)的3倍還多1人.
請(qǐng)根據(jù)所給信息解答下列問(wèn)題:
(1)求本次抽取的學(xué)生人數(shù);
(2)補(bǔ)全條形圖,在扇形統(tǒng)計(jì)圖中的橫線上填上正確的數(shù)值;
(3)該校有5000名學(xué)生,請(qǐng)你估計(jì)該校喜愛(ài)娛樂(lè)節(jié)目的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形的項(xiàng)點(diǎn)都在坐標(biāo)軸上,若與面積分別為和,若雙曲線恰好經(jīng)過(guò)的中點(diǎn),則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,半圓的直徑.點(diǎn)與點(diǎn)重合,半圓以的速度從左向右移動(dòng),在運(yùn)動(dòng)過(guò)程中,點(diǎn)、始終在所在的直線上.設(shè)運(yùn)動(dòng)時(shí)間為,半圓與的重疊部分的面積為.
(1)當(dāng)時(shí),設(shè)點(diǎn)是半圓上一點(diǎn),點(diǎn)是線段上一點(diǎn),則的最大值為_________;的最小值為________.
(2)在平移過(guò)程中,當(dāng)點(diǎn)與的中點(diǎn)重合時(shí),求半圓與重疊部分的面積;
(3)當(dāng)為何值時(shí),半圓與的邊所在的直線相切?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC為菱形,點(diǎn)C的坐標(biāo)為(8,0),∠AOC=60°,垂直于x軸的直線l從y軸出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),設(shè)直線l與菱形OABC的兩邊分別交于點(diǎn)M、N(點(diǎn)M在點(diǎn)N的上方).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)設(shè)△OMN的面積為S,直線l運(yùn)動(dòng)時(shí)間為t秒(0≤t≤12),求S與t的函數(shù)表達(dá)式;
(3)在(2)的條件下,t為何值時(shí),S最大?并求出S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線C1:y=ax2+bx﹣1經(jīng)過(guò)點(diǎn)A(﹣2,1)和點(diǎn)B(﹣1,﹣1),拋物線C2:y=2x2+x+1,動(dòng)直線x=t與拋物線C1交于點(diǎn)N,與拋物線C2交于點(diǎn)M.
(1)求拋物線C1的表達(dá)式;
(2)當(dāng)△AMN是以MN為直角邊的等腰直角三角形時(shí),求t的值;
(3)在(2)的條件下,設(shè)拋物線C1與y軸交于點(diǎn)P,點(diǎn)M在y軸右側(cè)的拋物線C2上,連接AM交y軸于點(diǎn)K,連接KN,在平面內(nèi)有一點(diǎn)Q,連接KQ和QN,當(dāng)KQ=1且∠KNQ=∠BNP時(shí),請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AD是⊙O的弦,點(diǎn)F是DA延長(zhǎng)線上的一點(diǎn),過(guò)⊙O上一點(diǎn)C作⊙O的切線交DF于點(diǎn)E,CE⊥DF.
(1)求證:AC平分∠FAB;
(2)若AE=1,CE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將線段 AB 先向右平移 5 個(gè)單位,再將所得線段繞原點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn) 90°,得到線段 AB ,則點(diǎn) B 的對(duì)應(yīng)點(diǎn) B′的坐標(biāo)是( )
A.(-4 , 1)B.( -1, 2)C.(4 ,- 1)D.(1 ,- 2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊中,D為邊AC的延長(zhǎng)線上一點(diǎn)(),平移線段BC,使點(diǎn)C移動(dòng)到點(diǎn)D,得到線段ED,M為ED的中點(diǎn),過(guò)點(diǎn)M作ED的垂線,交BC于點(diǎn)F,交AC于點(diǎn)G.
(1)依題意補(bǔ)全圖形;
(2)求證:;
(3)連接DF并延長(zhǎng)交AB于點(diǎn)H,用等式表示線段AH與CG的數(shù)量關(guān)系,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com