【題目】如圖,在Rt△ABC中,∠C=90°,⊙O是Rt△ABC的內(nèi)切圓,切點(diǎn)為D、E、F.
(1)求證:四邊形OECF是正方形;
(2)若AF=10,BE=3,求⊙O的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富學(xué)生的校園文化生活,學(xué)校開設(shè)了書法、體育、美術(shù)音樂共四門選修課程.為了合理的分配教室,教務(wù)處問卷調(diào)查了部分學(xué)生,并將了解的情況繪制成如下不完整的統(tǒng)計(jì)圖:
(1)參與問卷調(diào)查的共有________人,其中選修美術(shù)的有________人,選修體育的學(xué)生人數(shù)對(duì)應(yīng)扇形統(tǒng)計(jì)圖中圓心角的度數(shù)為________.
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若每人必須選修一門課程,且只能選一門,已知小紅沒有選體育,小剛沒有選修書法和美術(shù),則他們選修同一門課程的概率是多少,列樹狀圖或列表法求解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明要測(cè)量河內(nèi)小島B到河邊公路AD的距離,在點(diǎn)A處測(cè)得∠BAD=37°,沿AD方向前進(jìn)150米到達(dá)點(diǎn)C,測(cè)得∠BCD=45°. 求小島B到河邊公路AD的距離.
(參考數(shù)據(jù):sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx+4與二次函數(shù)y=ax2+c的圖像的一個(gè)交點(diǎn)坐標(biāo)為(1,2),另一個(gè)交點(diǎn)是該二次函數(shù)圖像的頂點(diǎn)
(1)求k,a,c的值;
(2)過點(diǎn)A(0,m)(0<m<4)且垂直于y軸的直線與二次函數(shù)y=ax2+c的圖像相交于B,C兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),記W=OA2+BC2,求W關(guān)于m的函數(shù)解析式,并求W的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(11·孝感)學(xué)生甲與學(xué)生乙玩一種轉(zhuǎn)盤游戲.如圖是兩個(gè)完全相同的轉(zhuǎn)盤,每個(gè)轉(zhuǎn)盤被分成面積相等的四個(gè)區(qū)域,分別用數(shù)字“1”、“2”、“3”、“4”表示.固定指針,同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,任其自由停止,若兩指針?biāo)笖?shù)字的積為奇數(shù),則甲獲勝;若兩指針?biāo)笖?shù)字的積為偶數(shù),則乙獲勝;若指針指向扇形的分界線,則都重轉(zhuǎn)一次.在該游戲中乙獲勝的概率是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一學(xué)校為了解九年級(jí)學(xué)生某次的體育測(cè)試成績(jī),現(xiàn)對(duì)這次體育測(cè)試成績(jī)進(jìn)行隨機(jī)抽樣調(diào)查,結(jié)果統(tǒng)計(jì)如下,其中扇形統(tǒng)計(jì)圖中C等級(jí)所在扇形的圓心角為36°.
被抽取的體育測(cè)試成績(jī)頻數(shù)分布表
等級(jí) | 成績(jī)(分) | 頻數(shù)(人數(shù)) |
A | 36<x≤40 | 19 |
B | 32<x≤36 | b |
C | 28<x≤32 | 5 |
D | 24<x≤28 | 4 |
E | 20<x≤24 | 2 |
合計(jì) | a |
請(qǐng)你根據(jù)以上圖表提供的信息,解答下列問題:
(1)a= ,b= ;
(2)A等級(jí)的頻率是 ;
(3)在扇形統(tǒng)計(jì)圖中,B等級(jí)所對(duì)應(yīng)的圓心角是 度;
(4)已知該校九年級(jí)共有780學(xué)生,估計(jì)成績(jī)(分)在32<x≤36之間的學(xué)生約有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣2,2),點(diǎn)B的坐標(biāo)為(6,6),拋物線經(jīng)過A、O、B三點(diǎn),連結(jié)OA、OB、AB,線段AB交y軸于點(diǎn)E.
(1)求點(diǎn)E的坐標(biāo);
(2)求拋物線的函數(shù)解析式;
(3)點(diǎn)F為線段OB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、B重合),直線EF與拋物線交于M、N兩點(diǎn)(點(diǎn)N在y軸右側(cè)),連結(jié)ON、BN,當(dāng)點(diǎn)F在線段OB上運(yùn)動(dòng)時(shí),求△BON面積的最大值,并求出此時(shí)點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知是等腰直角三角形,,點(diǎn)D是BC的中點(diǎn)作正方形DEFG,使點(diǎn)A、C分別在DG和DE上,連接AE,BG.
試猜想線段BG和AE的數(shù)量關(guān)系是______;
將正方形DEFG繞點(diǎn)D逆時(shí)針方向旋轉(zhuǎn),
判斷中的結(jié)論是否仍然成立?請(qǐng)利用圖2證明你的結(jié)論;
若,當(dāng)AE取最大值時(shí),求AF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),點(diǎn)D是 的中點(diǎn),DE是⊙O的切線,DF⊥AB于F,點(diǎn)G是 的中點(diǎn)
(1)求證:△ADE≌△ADF;
(2)若OF=3,AB=10,求圖中陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com