【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)B(2,0)、C(0,2)兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為A.
(1)求拋物線的解析式;
(2)點(diǎn)D從點(diǎn)C出發(fā)沿線段CB以每秒個(gè)單位長度的速度向點(diǎn)B運(yùn)動(dòng),作DE⊥CB交y軸于點(diǎn)E,以CD、DE為邊作矩形CDEF,設(shè)點(diǎn)D運(yùn)動(dòng)時(shí)間為t(s).
①當(dāng)點(diǎn)F落在拋物線上時(shí),求t的值;
②若點(diǎn)D在運(yùn)動(dòng)過程中,設(shè)△ABC與矩形CDEF重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
【答案】(1);(2)①②,,
【解析】
(1)把B、C的坐標(biāo)代入拋物線的解析式求解即可;
(2)①點(diǎn)F在拋物線上,作DG⊥y軸,FH⊥y軸,證明△CDG≌△EFH,根據(jù)全等三角形的性質(zhì)有CG=HE,GD=FH,證明△CGD∽△COB,根據(jù)相似三角形的性質(zhì)得到表示出OH的長度,即可求得點(diǎn)F的坐標(biāo),最后將點(diǎn)F的坐標(biāo)代入拋物線的解析式求解即可;
②當(dāng)時(shí),S=CDDE;當(dāng)時(shí),S=矩形DEGF的面積-△GEH的面積.當(dāng)時(shí),
解:(1)把兩點(diǎn)代入拋物線解析式得:
解得:
則拋物線解析式為
(2)①如圖1所示,點(diǎn)F在拋物線上,作DG⊥y軸,FH⊥y軸,
易得△CDG≌△EFH,即CG=HE,GD=FH,
由題意得:
∵△CGD∽△COB,
∴
即
∴OH=,即
代入拋物線解析式得:
解得:t=;
②分三種情況考慮:
(i)如圖2所示,△ABC與矩形CDEF重疊部分為矩形CDEF,
在Rt△CDE中,
∴DE=3t,
(ii)如圖3所示,△ABC與矩形CDEF重疊部分為五邊形CDHGF,
由題意得:
在Rt△CED中,∠ECD=60°,
∴
∴
在Rt△OGE中,
同理可得 即
則
(iii)如圖4,△ABC與矩形CDEF重疊部分為四邊形CDMN,
由題意得:
在Rt△BMD中,
則
,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請認(rèn)真閱讀下面的數(shù)學(xué)小探究系列,完成所提出的問題:
探究1:如圖1,在等腰直角三角形ABC中,,,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到線段BD,連接求證:的面積為提示:過點(diǎn)D作BC邊上的高DE,可證≌
探究2:如圖2,在一般的中,,,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到線段BD,連接請用含a的式子表示的面積,并說明理由.
探究3:如圖3,在等腰三角形ABC中,,,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到線段BD,連接試探究用含a的式子表示的面積,要有探究過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,,,, ,動(dòng)點(diǎn),同時(shí)從點(diǎn)出發(fā),點(diǎn)以的速度沿折線運(yùn)動(dòng)到點(diǎn),點(diǎn)以的速度沿運(yùn)動(dòng)到點(diǎn),設(shè),同時(shí)出發(fā)時(shí),的面積為,則與的函數(shù)圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某電視臺的一檔選秀節(jié)目中,有三位評委,每位評委在選手完成才藝表演后,出示“通過”(用√表示)或“淘汰”(用×表示)的評定結(jié)果,節(jié)目組規(guī)定:每位選手至少獲得兩位評委的“通過”才能晉級.
(1)請用樹狀圖列舉出選手A獲得三位評委評定的各種可能的結(jié)果;
(2)求選手A晉級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解九年級學(xué)生體育測試成績情況,以九年級(1)班學(xué)生的體育測試成績?yōu)闃颖,按B、C、D四個(gè)等級進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制如下兩幅統(tǒng)計(jì)圖,請你結(jié)合圖中所給信息解答下列問題:(說明:A級:90分﹣100分;B級:75分﹣89分;C級:60分~74分;D級:60分以下)
(1)求出D級學(xué)生的人數(shù)占全班總?cè)藬?shù)的百分比;
(2)求出扇形統(tǒng)計(jì)圖(圖2)中C級所在的扇形圓心角的度數(shù);
(3)若該校九年級學(xué)生共有500人,請你估計(jì)這次考試中A級和B級的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖,這個(gè)三角形的構(gòu)造法則:兩腰上的數(shù)都是1,其余每個(gè)數(shù)均為其上方左、右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個(gè)數(shù)1,2,1,恰好對應(yīng)(a+b)2=a2+2ab+b2展開式中的系數(shù);第四行的四個(gè)數(shù)1,3,3,1,恰好對應(yīng)著(a+b)3=a3+3a2b+3ab2+b2展開式中的系數(shù)等.
(1)(a+b)n展開式中項(xiàng)數(shù)共有 項(xiàng).
(2)寫出(a+b)5的展開式:(a+b)5= .
(3)利用上面的規(guī)律計(jì)算:25﹣5×24+10×23﹣10×22+5×2﹣1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論:
①;②;③;④;⑤;⑥當(dāng)時(shí),隨的增大而增大.
其中正確的說法有________(寫出正確說法的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=5,E是BC邊上的一個(gè)動(dòng)點(diǎn),DF⊥AE,垂足為點(diǎn)F,連結(jié)CF
(1)若AE=BC
①求證:△ABE≌△DFA;②求四邊形CDFE的周長;③求tan∠FCE的值;
(2)探究:當(dāng)BE為何值時(shí),△CDF是等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com