【題目】如圖,在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標出了點C的對應點C′.(利用網(wǎng)格點和三角板畫圖)

(1)畫出平移后的△A′B′C′.
(2)畫出AB邊上的高線CD;
(3)畫出BC邊上的中線AE;
(4)若連接BB′、CC′,則這兩條線段之間的關系是

【答案】
(1)

解:△A′B′C′如圖所示;


(2)

解:AB邊上的高線CD如圖所示;


(3)

解:BC邊上的中線AE如圖所示;


(4)平行且相等

【解析】(1)根據(jù)網(wǎng)格結構找出點A、B、C的對應點A′、B′、C′的位置,然后順次連接即可;(2)根據(jù)三角形的高線的定義結合圖形作出即可;(3)根據(jù)三角形的中線的定義結合圖形作出即可;(4)根據(jù)平移的性質(zhì)解答.
【考點精析】根據(jù)題目的已知條件,利用坐標與圖形變化-平移的相關知識可以得到問題的答案,需要掌握新圖形的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應點;連接各組對應點的線段平行且相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如果a<b,那么a2<b2。()

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點A(1,0)、B(3,0)、C(0,3)三點。

(1)求拋物線的解析式。

(2)M是線段BC上的點(不與B,C重合),過MMNy軸交拋物線于N若點M的橫坐標為m,請用m的代數(shù)式表示MN的長。

(3)在(2)的條件下,連接NB、NC,是否存在m,使BNC的面積最大?若存在,求m的值;若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,寫出△ABC各頂點的坐標以及△ABC關于x對稱的△A1B1C1的各頂點坐標,并畫出△ABC關于y對稱的△A2B2C2.并求△ABC的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個長13米的梯子AB斜靠在墻上,這時梯子底端距墻底為5米,如果梯子的頂端沿墻下滑1米,梯子的底端在水平方向也將滑動多少米?(精確到0.01米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠B=32°,以A為圓心,任意長為半徑畫弧分別交AB , AC于點MN , 再分別以M , N為圓心,大于 MN的長為半徑畫弧,兩弧交于點P , 連接AP并延長交BC于點D , 則下列說法:
AD是∠BAC的平分線;
CD是△ADC的高;
③點DAB的垂直平分線上;
④∠ADC=61°.
其中正確的有( 。
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把一個正五邊形繞它的中心旋轉,至少旋轉______,就能與原來的位置重合.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知m是方程x22x1=0的一個根,則代數(shù)式2m24m+2019的值為( )

A. 2022B. 2021C. 2020D. 2019

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖ABCD的對角線ACBD交于點O,AE平分BAD交BC于點EADC=600,AB=BC連接OE下列 結論:①∠CAD=300 SABCD=ABAC OB=AB OE=BC 成立的個數(shù)有( )

A1個 B2個 C3個 D4個

查看答案和解析>>

同步練習冊答案