如圖,數(shù)學(xué)實習(xí)小組在高300米的山腰(即PH=300米)P處進(jìn)行測量,測得對面山坡上A處的俯角為30°,對面山腳B處的俯角60°.已知tan∠ABC=,點(diǎn)P,H,B,C,A在同一個平面上,點(diǎn)H,B,C在同一條直線上,且PH⊥HC.

(1)求∠ABP的度數(shù);
(2)求A,B兩點(diǎn)間的距離.
解:(1)∵tan∠ABC=,∴∠ABC=30°。
∵從P點(diǎn)望山腳B處的俯角60°,∴∠PBH=60°。
∴∠ABP=180°﹣30°﹣60°=90°。
(2)由題意得:∠PBH=60°,
∵∠ABC=30°,∴∠ABP=90°。
又∵∠APB=30°,∴△PAB為等腰直角三角形。
在Rt△PHB中,PB=PH•tan∠PBH=300
在Rt△PBA中,AB=PB•tan∠BPC=300。
∴A、B兩點(diǎn)之間的距離為300米

試題分析:(1)根據(jù)俯角以及坡度的定義即可求解。
(2)在Rt△PHB中,根據(jù)三角函數(shù)即可求得PB的長,然后在Rt△PBA中利用三角函數(shù)即可求解。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將∠AOB放置在5×5的正方形網(wǎng)格中,則tan∠AOB的值是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,C是⊙0上的一點(diǎn),直線MN經(jīng)過點(diǎn)C,過點(diǎn)A作直線MN的垂線,垂足為點(diǎn)D,且∠BAC=∠DAC.

(1)猜想直線MN與⊙O的位置關(guān)系,并說明理由;
(2)若CD=6,cos∠ACD=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正六邊形ABCDEF中,AB=2,點(diǎn)P是ED的中點(diǎn),連接AP,則AP的長為( 。
A.B.4C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一艘海上巡邏船在A地巡航,這時接到B地海上指揮中心緊急通知:在指揮中心北偏西60°方向的C地,有一艘漁船遇險,要求馬上前去救援.此時C地位于北偏西30°方向上,A地位于B地北偏西75°方向上,A、B兩地之間的距離為12海里.求A、C兩地之間的距離(參考數(shù)據(jù):≈1.41,≈1.73,≈2.45,結(jié)果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分線交BC于點(diǎn)M,交AB于點(diǎn)E,AC的垂直平分線交BC于點(diǎn)N,交AC于點(diǎn)F,則MN的長為
A.4cmB.3cmC.2cmD.1cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,C島位于我南海A港口北偏東60方向,距A港口60海里處,我海監(jiān)船從A港口出發(fā),自西向東航行至B處時,接上級命令趕赴C島執(zhí)行任務(wù),此時C島在B處北偏西45°方向上,海監(jiān)船立刻改變航向以每小時60海里的速度沿BC行進(jìn),則從B處到達(dá)C島需要多少小時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在Rt△ABC中,∠C=90°,,BC=8,則△ABC的面積為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

釣魚島是我國固有領(lǐng)土,為測量釣魚島東西兩端A,B的距離,如圖2,我勘測飛機(jī)在距海平面垂直高度為1公里的點(diǎn)C處,測得端點(diǎn)A的俯角為45°,然后沿著平行于AB的方向飛行3.2公里到點(diǎn)D,并測得端點(diǎn)B的俯角為37°,求釣魚島兩端AB的距離.(結(jié)果精確到0.1公里,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41)

查看答案和解析>>

同步練習(xí)冊答案