【題目】如圖,已知拋物線y=x2+3x﹣8的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C.
(1)求直線BC的解析式;
(2)點(diǎn)F是直線BC下方拋物線上的一點(diǎn),當(dāng)△BCF的面積最大時(shí),在拋物線的對(duì)稱軸上找一點(diǎn)P,使得△BFP的周長(zhǎng)最小,請(qǐng)求出點(diǎn)F的坐標(biāo)和點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,是否存在這樣的點(diǎn)Q(0,m),使得△BFQ為等腰三角形?如果有,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);如果沒(méi)有,請(qǐng)說(shuō)明理由.
【答案】(1)y=﹣x﹣8;(2)F(﹣4,﹣12),P(﹣3,﹣10);(3)見(jiàn)解析.
【解析】試題分析:(1)利用待定系數(shù)法求出B、C兩點(diǎn)坐標(biāo)即可解決問(wèn)題;
(2)如圖1中,作FN∥y軸交BC于N.設(shè)F(m, m2+3m﹣8),則N(m,﹣m﹣8),構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)求出點(diǎn)F坐標(biāo),因?yàn)辄c(diǎn)B關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)是A,連接AF交對(duì)稱軸于P,此時(shí)△BFP的周長(zhǎng)最小,求出直線AF的解析式即可解決問(wèn)題;
(3)如圖2中,分三種情形討論:①當(dāng)FQ1=FB時(shí),Q1(0,0).②當(dāng)BF=BQ時(shí),易知Q2(0,﹣ ),Q3(0, ).③當(dāng)Q4B=Q4F時(shí),設(shè)Q(0,m),構(gòu)建方程即可解決問(wèn)題;
試題解析:解:(1)對(duì)于拋物線y=x2+3x﹣8,令y=0,得到: x2+3x﹣8=0,解得:x=﹣8或2,∴B(﹣8,0),A(2,0),令x=0,得到:y=﹣8,∴A(2,0),B(﹣8,0),C(0,﹣8),設(shè)直線BC的解析式為y=kx+b,則有: ,解得: ,∴直線BC的解析式為y=﹣x﹣8.
(2)如圖1中,作FN∥y軸交BC于N.設(shè)F(m, m2+3m﹣8),則N(m,﹣m﹣8)
∴S△FBC=S△FNB+S△FNC=FN×8=4FN=4[(﹣m﹣8)﹣(m2+3m﹣8)]=﹣2m2﹣16m=﹣2(m+4)2+32,∴當(dāng)m=﹣4時(shí),△FBC的面積有最大值,此時(shí)F(﹣4,﹣12).∵拋物線的對(duì)稱軸x=﹣3,
(3)如圖2中,∵B(﹣8,0),F(﹣4,0),∴BF==.分三種情況討論:
①當(dāng)FQ1=FB時(shí),Q1(0,0).
②當(dāng)BF=BQ時(shí),易知Q2(0,﹣ ),Q3(0, ).
③當(dāng)Q4B=Q4F時(shí),設(shè)Q4(0,m),則有82+m2=42+(m+12)2,解得m=﹣4,∴Q4(0,﹣4)
∴Q點(diǎn)坐標(biāo)為(0,0)或(0, )或(0,﹣)或(0,﹣4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),過(guò)點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)P,過(guò)點(diǎn)A作AD⊥PC于點(diǎn)D,AD與⊙O交于點(diǎn)E.
(1)求證:AC平分∠DAB.
(2)若AB=10,sin∠CAB=,請(qǐng)寫(xiě)出求DE長(zhǎng)的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過(guò)點(diǎn)A作⊙O的切線交OC的延長(zhǎng)線于點(diǎn)D,交BC的延長(zhǎng)線于點(diǎn)E.
(1)求證:∠DAC=∠DCE;
(2)若AB=2,sin∠D=,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:正方形OABC的邊OC、OA分別在x、y軸的正半軸上,設(shè)點(diǎn)B(4,4),點(diǎn)P(t,0)是x軸上一動(dòng)點(diǎn),過(guò)點(diǎn)O作OH⊥AP于點(diǎn)H,直線OH交直線BC于點(diǎn)D,連AD.
(1)如圖1,當(dāng)點(diǎn)P在線段OC上時(shí),求證:OP=CD;
(2)在點(diǎn)P運(yùn)動(dòng)過(guò)程中,△AOP與以A、B、D為頂點(diǎn)的三角形相似時(shí),求t的值;
(3)如圖2,拋物線y=﹣x2+x+4上是否存在點(diǎn)Q,使得以P、D、Q、C為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,∠BAC=90°,AB=AC=2,D、E兩點(diǎn)分別在AC、BC上,且DE∥AB,DC=2,將△CDE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△CD′E′,如圖2,點(diǎn)D、E對(duì)應(yīng)點(diǎn)分別為D′、E′、D′、E′與AC相交于點(diǎn)M,當(dāng)E′剛好落在邊AB上時(shí),△AMD′的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的直徑AB為10cm,弦BC=8cm,∠ACB的平分線交⊙O于點(diǎn)D.連接AD,BD.求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某海域有兩個(gè)海拔均為200米的海島A和海島B,一勘測(cè)飛機(jī)在距離海平面垂直高度為1100米的空中飛行,飛行到點(diǎn)C處時(shí)測(cè)得正前方一海島頂端A的俯角是45°,然后沿平行于AB的方向水平飛行1.99×104米到達(dá)點(diǎn)D處,在D處測(cè)得正前方另一海島頂端B的俯角是60°,求兩海島間的距離AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸交于A,B兩點(diǎn),它們的對(duì)稱軸與x軸交于點(diǎn)N,過(guò)頂點(diǎn)M作ME⊥y軸于點(diǎn)E,連結(jié)BE交MN于點(diǎn)F.已知點(diǎn)A的坐標(biāo)為(﹣1,0).
(1)求該拋物線的解析式及頂點(diǎn)M的坐標(biāo);
(2)求△EMF與△BNF的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),經(jīng)過(guò)點(diǎn)C的直線與AB的延長(zhǎng)線交于點(diǎn)D,連接AC,BC,∠BCD=∠CAB.E是⊙O上一點(diǎn),弧CB=弧CE,連接AE并延長(zhǎng)與DC的延長(zhǎng)線交于點(diǎn)F.
(1)求證:DC是⊙O的切線;
(2)若⊙O的半徑為3,sin∠D=,求線段AF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com