【題目】如圖,一只螞蟻在網(wǎng)格(每小格邊長(zhǎng)為1)上沿著網(wǎng)格線運(yùn)動(dòng).它從格點(diǎn)處出發(fā)去看望格點(diǎn)B、C、D等處的螞蟻,規(guī)定:向上向右走均為正,向下向左走均為負(fù).如:從A到B記為:,從B到A記為:,其中第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向.
(1)填空:圖中,;
(2)若這只螞蟻從A處去M處的螞蟻的行走路線依次為,,,,則點(diǎn)M的坐標(biāo)為(________,________);
(3)若圖中另有兩個(gè)格點(diǎn)Р、Q,且,,則從Q到A記為________________.
【答案】(1)+3,-1﹔D,+1;(2)(3)
【解析】
(1)根據(jù)題中的規(guī)定和觀察網(wǎng)格判斷;
(2)分別根據(jù)縱橫坐標(biāo)進(jìn)行計(jì)算即可;
(3)根據(jù)規(guī)則的坐標(biāo)減去的坐標(biāo)即為從Q到A的坐標(biāo).
解:(1)根據(jù)規(guī)定:向上向右走均為正,向下向左走均為負(fù)
觀察網(wǎng)格可知:﹔
根據(jù)題意可知為向上走了3格,進(jìn)而可以判斷向右走了1格
∴;
(2)根據(jù)題意螞蟻從A處去M處
則點(diǎn)M的橫坐標(biāo)為:
則點(diǎn)M的縱坐標(biāo)為:
∴點(diǎn)M的坐標(biāo)為;
(3)∵,
∴,
∴點(diǎn)向右走2格,向上走4格到達(dá)點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE、BD是的高,AE,BD交于點(diǎn)C,且AE=BE,BD平分.
(1)求證:BC=2AD
(2)求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BC邊上的高AG平分∠BAC.
(1)如圖1,求證:AB=AC.
(2)如圖2,點(diǎn)D、E在△ABC的邊BC上,AD=AE,BC=10cm,DE=6cm,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長(zhǎng)是2,M是高CH所在直線上的一個(gè)動(dòng)點(diǎn),連接MB,將線段BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接MN,則在點(diǎn)M運(yùn)動(dòng)過程中,線段MN長(zhǎng)度的最小值是( )
A. B. 1 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拓展與探索:如圖,在正△ABC中,點(diǎn)E在AC上,點(diǎn)D在BC的延長(zhǎng)線上.
(1)如圖1,AE=EC=CD,求證:BE=ED;
(2)如圖2,若E為AC上異于A、C的任一點(diǎn),AE=CD,(1)中結(jié)論是否仍然成立?為什么?
(3)若E為AC延長(zhǎng)線上一點(diǎn),且AE=CD,試探索BE與ED間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣2,0),B(4,0),拋物線y=ax2+bx﹣1過A、B兩點(diǎn),并與過A點(diǎn)的直線y=﹣x﹣1交于點(diǎn)C.
(1)求拋物線解析式及對(duì)稱軸;
(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使四邊形ACPO的周長(zhǎng)最。咳舸嬖,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)點(diǎn)M為y軸右側(cè)拋物線上一點(diǎn),過點(diǎn)M作直線AC的垂線,垂足為N.問:是否存在這樣的點(diǎn)N,使以點(diǎn)M、N、C為頂點(diǎn)的三角形與△AOC相似,若存在,求出點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點(diǎn),AB=DB,BE平分∠ABC,交AC邊于點(diǎn)E,連接DE.
(1)求證:△ABE≌△DBE;
(2)若∠A=100°,∠C=50°,求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)是3,BP=CQ,連接AQ,DP交于點(diǎn)O,并分別與邊CD,BC交于點(diǎn)F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當(dāng)BP=1時(shí),tan∠OAE=,其中正確結(jié)論的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(實(shí)驗(yàn)操作)如圖①,在中,,現(xiàn)將邊沿的平分線翻折,點(diǎn)落在邊的點(diǎn)處;再將線段沿翻折到線段,連接.
(探究發(fā)現(xiàn))若點(diǎn),,三點(diǎn)共線,則的大小是______,的大小是________,此時(shí)三條線段,,之間的數(shù)量關(guān)系是________.
(應(yīng)用拓展)如圖②,將圖①中滿足(實(shí)驗(yàn)操作)與(探究發(fā)現(xiàn))的的邊延長(zhǎng)至,使得,連接,直接寫出的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com