(2010•牡丹江)平面內(nèi)有一等腰直角三角板(∠ACB=90°)和一直線MN.過點C作CE⊥MN于點E,過點B作BF⊥MN于點F.當(dāng)點E與點A重合時(如圖1),易證:AF+BF=2CE.當(dāng)三角板繞點A順時針旋轉(zhuǎn)至圖2、圖3的位置時,上述結(jié)論是否仍然成立?若成立,請給予證明;若不成立,線段AF、BF、CE之間又有怎樣的數(shù)量關(guān)系,請直接寫出你的猜想,不需證明.

【答案】分析:過B作BH⊥CE與點H,易證△ACE≌△CBH,根據(jù)全等三角形的對應(yīng)邊相等,即可證得AF+BF=2CE.
解答:解:圖2,AF+BF=2CE仍成立,
證明:過B作BH⊥CE于點H,
∵∠BCH+∠ACE=90°,
又∵在直角△ACE中,∠ACE+∠CAE=90°,
∴∠CAE=∠BCH,
又∵AC=BC,∠AEC=∠BHC=90°
∴△ACE≌△CBH.
∴CH=AE,BF=HE,CE=BH,
∴AF+BF=AE+EF+BF=CH+EF+HE=CE+EF=2EC.
圖3中,過點C作CG⊥BF,交BF延長線于點G,
∵AC=BC,
可得∠AEC=∠CGB,
∠ACE=∠BCG,
∴△CBG≌△CAE,
∴AE=BG,
∵AF=AE+EF,
∴AF=BG+CE=BF+FG+CE=2CE+BF,
∴AF-BF=2CE.

點評:正確作出垂線,構(gòu)造全等三角形是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2010•牡丹江)去年,某校開展了主題為“健康上網(wǎng),綠色上網(wǎng)”的系列活動.經(jīng)過一年的努力,取得了一定的成效.為了解具體情況,學(xué)校隨機抽樣調(diào)查了初二某班全體學(xué)生每周上網(wǎng)所用時間,同時也調(diào)查了使用網(wǎng)絡(luò)的學(xué)生上網(wǎng)的最主要目的,并用得到的數(shù)據(jù)繪制了下面兩幅統(tǒng)計圖.請你根據(jù)圖中提供的信息,回答下列問題:
(1)在這次調(diào)查中,初二該班共有學(xué)生
55
55
人;
(2)如果該校初二有660名學(xué)生,估計每周上網(wǎng)時間超過4小時的初二學(xué)生大約有
84
84
人;
(3)請將圖2空缺部分補充完整,并計算這個班級使用網(wǎng)絡(luò)的學(xué)生中,每周利用網(wǎng)絡(luò)查找學(xué)習(xí)資料的學(xué)生有
23
23
人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年黑龍江省森工總局初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•牡丹江)如圖,矩形OABC在平面直角坐標(biāo)系中,若OA、OC的長滿足
(1)求B、C兩點的坐標(biāo);
(2)把△ABC沿AC對折,點B落在點B′處,線段AB′與x軸交于點D,求直線BB′的解析式;
(3)在直線BB′上是否存在點P,使△ADP為直角三角形?若存在,請直接寫出P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年黑龍江省森工總局初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•牡丹江)如圖,反比例函數(shù)與正比例函數(shù)的圖象相交于A、B兩點,過點A作AC⊥x軸于點C.若△ABC的面積是4,則這個反比例函數(shù)的解析式為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《四邊形》(07)(解析版) 題型:解答題

(2010•牡丹江)如圖,矩形OABC在平面直角坐標(biāo)系中,若OA、OC的長滿足
(1)求B、C兩點的坐標(biāo);
(2)把△ABC沿AC對折,點B落在點B′處,線段AB′與x軸交于點D,求直線BB′的解析式;
(3)在直線BB′上是否存在點P,使△ADP為直角三角形?若存在,請直接寫出P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年黑龍江省牡丹江市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•牡丹江)如圖,二次函數(shù)y=-x2+bx+c的圖象經(jīng)過坐標(biāo)原點,與x軸交于點A(-2,0).
(1)求此二次函數(shù)的解析式及點B的坐標(biāo);
(2)在拋物線上有一點P,滿足S△AOP=3,請直接寫出點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案