如圖,已知以Rt△ABC的直角邊AB為直徑做圓O,與斜邊AC交于點D,E為BC邊的中點,連接DE.

(1)求證:DE是⊙O的切線;
(2)連接OE、AE,當∠CAB為何值時,四邊形AODE是平行四邊形,并說明理由;
(3)在(2)的條件下,求sin∠CAE的值.
(1)通過證明∠ODE=90°,OD⊥DE,得DE是⊙O的切線 (2)  當∠CAB=45°時,四邊形AODE是平行四邊形 (3)     

試題分析:(1)證明:連接OD、BD.
∵AB是⊙O的直徑,∴∠ADB=90°,
∵∠ADB+∠BDC=180°,∴∠BDC=90°,
∵E為BC邊的中點,∴BE=DE=CE=BC
∴∠BDE=∠DBE, ∵OB="BD," ∴∠OBD=∠ODB,
又∵∠ABC=∠OBD+∠DBE=90°,
∴∠ODB+∠BDE=90°,即∠ODE=90°,
∴OD⊥DE,∴DE是⊙O的切線.         

(2)解:當∠CAB=45°時,四邊形AODE是平行四邊形.
又∵∠ABC =90°,∴∠CAB=∠C =45°,∴AB=BC.
同理可得BD="CD," ∵∠BDC=90°,E為BC邊的中點,
∴DE⊥BC, ∴∠CED=∠ABC =90°, ∴DE∥AB.
又∵DE=BC,OA=AB, ∴DE=OA.
∴四邊形AODE是平行四邊形.  
(3)過點E作EF⊥AC交AC于點F,設EF=x,則CE=BE=x,BC=AB=2x,
在Rt△ABE中,AE==x
在Rt△AFE中,sin∠CAE===
點評:本題考查直線與圓相切,平行四邊形,掌握直線與圓相切的概念和性質,并能判斷直線與圓相切,掌握平行四邊形的判定方法,會判定一個四邊形是平行四邊形
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

某街道兩旁正在安裝漂亮的路燈,經(jīng)查看路燈圖紙,小紅發(fā)現(xiàn)該路燈的設計可以看作是“相切兩圓”的一部分,部分數(shù)據(jù)如圖所示:

⊙O1⊙O2相切于點C,CD切⊙O1于點C,A、B為路燈燈泡.已知∠AO1O2=∠BO2O1=60°. A、B、C三點距地面MN的距離分別為,請根據(jù)以上圖文信息,求:
(1)⊙O1、⊙O2的半徑分別多少cm;
(2)把A、B兩個燈泡看作兩個點,求線段AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知的直徑,點上,過點的直線與的延長線交于點,,

(1)求證:的切線;
(2)求證:;
(3)點是弧AB的中點,于點,若,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC 中,BA=BC,以AB為直徑作半圓⊙O,交AC于點D.連結DB,過點D 作DE⊥BC,
垂足為點E.

(1)求證:AD = CD;
(2)判斷直線DE與⊙O的位置關系,并說明理由;
(3)求證:DB2 = AB·BE.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在⊙O中,AB是直徑,AD是弦,∠ADE=60°,∠C=30°.

(1)判斷直線CD是否為⊙O的切線,請說明理由;
(2)若CD="3" ,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一個圓錐的高為3,側面展開圖是半圓,則圓錐的側面積是(    )
A.9B.18C.27D.39

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知Rt△ABC,直角邊AC、BC的長分別為3cm和4cm,以AC邊所在的直線為軸將△ABC旋轉一周,則所圍成的幾何體的側面積是      .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知A、B兩點的坐標分別為(-2,0)、(0,1),⊙C 的圓心坐標為(0,-1),半徑為1.若是⊙C上的一個動點,射線ADy軸交于點E,則ABE面積的最大值是( )

A.3            B.         C.      D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知BC是⊙O的直徑,AH⊥BC,垂足為D,點A為弧EF的中點,BF交AD于點E,且BE·EF=32,AD=6.
 
(1)求證:AE=BE;
(2)求DE的長;
(3)求BD的長 .

查看答案和解析>>

同步練習冊答案