【題目】已知一次函數(shù)和反比例函數(shù)

如圖1,若,且函數(shù)、的圖象都經(jīng)過點.求m,k的值;

如圖2,過點y軸的平行線l與函數(shù)的圖象相交于點B,與反比例函數(shù)的圖象相交于點C

,直線l與函數(shù)的圖象相交點當(dāng)點B、C、D中的一點到另外兩點的距離相等時,求的值;

過點Bx軸的平行線與函數(shù)的圖象相交與點當(dāng)的值取不大于1的任意實數(shù)時,點B、C間的距離與點B、E間的距離之和d始終是一個定值.求此時k的值及定值d

【答案】1m=12,k=2;(2)①m-n=1m-n=4;②k=1,定值d=1

【解析】

1)將點A的坐標代入一次函數(shù)表達式即可求解,將點A的坐標代入反比例函數(shù)表達式,即可求解;

2BD2+nm,BCmn,DC2+nn2,由BDBCBDDCBCCD得:mn102,即可求解;

E的坐標為(,m),dBC+BEmn+1)=1+mn)(1),即可求解.

解:(1)當(dāng)n=﹣2時,y1kx2,

將點A3,4)代入一次函數(shù)y1kx2

得:3k24,

解得:k2,

將點A3,4)代入反比例函數(shù)得:m3×412;

m12k2;

2當(dāng)x1時,點DB、C的坐標分別為(1,2+n)、(1,m)、(1,n),

BD|2+nm|,BCmnDC2+nn2

BDBCBDDCBCCD,

即:|2+nm|mn|2+nm|2mn2

即:mn1024,

當(dāng)mn0時,mn與題意不符,

D不能在C的下方,即BCCD也不存在,n+2n,故mn2不成立,

mn1mn4

E的橫坐標為:,

當(dāng)點E在點B左側(cè)時,

dBC+BEmn+1)=1+mn)(1),

mn的值取不大于1的任意數(shù)時,d始終是一個定值,

當(dāng)10時,此時k1,從而d1

當(dāng)點E在點B右側(cè)時,

同理BC+BE=(mn)(1+)﹣1,

當(dāng)1+0,k=﹣1時,(不合題意舍去)

k1,d1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,一個智能機器人接到如下指令:從原點O出發(fā),按向右,向上,向右,向下的方向依次不斷移動,每次移動1m.其行走路線如圖所示,第1次移動到A1,第2次移動到A2,…,第n次移動到An.則△OA2A2018的面積是(  )

A. 504m2 B. m2 C. m2 D. 1009m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AC與BD相交于點O.若 AO=3,∠OBC=30°,求矩形的周長和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動 實驗、猜想與證明

問題情境

1)數(shù)學(xué)活動課上,小穎向同學(xué)們提出了這樣一個問題:如圖(1),在矩形ABCD中,AB=2BC,M、N分別是ABCD的中點,作射線MN,連接MD,MC,請直接寫出線段MDMC之間的數(shù)量關(guān)系.

解決問題

2)小彬受此問題啟發(fā),將矩形ABCD變?yōu)槠叫兴倪呅,其中?/span>A為銳角,如圖(2),AB=2BC,M,N分別是ABCD的中點,過點CCEAD交射線AD于點E,交射線MN于點F,連接ME,MC,則ME=MC,請你證明小彬的結(jié)論;

3)小麗在小彬結(jié)論的基礎(chǔ)上提出了一個新問題:∠BME與∠AEM有怎樣的數(shù)量關(guān)系?請你回答小麗提出的這個問題,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

小明在數(shù)學(xué)課外小組活動時遇到這樣一個問題:

如果一個不等式中含有絕對值,并且絕對值符號中含有未知數(shù),我們把這個不等式叫做絕對值不等式,求絕對值不等式|x|>3的解集.

小明同學(xué)的思路如下:

先根據(jù)絕對值的定義,求出|x|恰好是3時x的值,并在數(shù)軸上表示為點A,B,如圖所示.觀察數(shù)軸發(fā)現(xiàn),以點A,B為分界點把數(shù)軸分為三部分:

點A左邊的點表示的數(shù)的絕對值大于3;

點A,B之間的點表示的數(shù)的絕對值小于3;

點B右邊的點表示的數(shù)的絕對值大于3.

因此,小明得出結(jié)論絕對值不等式|x|>3的解集為:x<-3或x>3.

參照小明的思路,解決下列問題:

(1)請你直接寫出下列絕對值不等式的解集.

①|(zhì)x|>1的解集是

②|x|<2.5的解集是

(2)求絕對值不等式2|x-3|+5>13的解集.

(3)直接寫出不等式x2>4的解集是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場為了吸引顧客,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,如圖所示,并規(guī)定:顧客消費200元(含200元)以上,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,如果轉(zhuǎn)盤停止后,指針正好對準九折、八折、七折區(qū)域,顧客就可以獲得此項優(yōu)惠,如果指針恰好在分割線上時,則需重新轉(zhuǎn)動轉(zhuǎn)盤.

1)某顧客正好消費220元,他轉(zhuǎn)一次轉(zhuǎn)盤,他獲得九折、八折、七折優(yōu)惠的概率分別是多少?

2)某顧客消費中獲得了轉(zhuǎn)動一次轉(zhuǎn)盤的機會,實際付費168元,請問他消費所購物品的原價應(yīng)為多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程 x2-6x+m+4=0有兩個實數(shù)根 x1x2.

1)求m的取值范圍;

2)若 x1,x2滿足x2-2x1=-3 ,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校學(xué)生的身高情況,王老師隨機抽取該校男生、女生進行抽樣調(diào)查,已知抽取的樣本中,男生、女生人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:

組別

身高

身高情況分組表

根據(jù)圖表提供的信息,回答下列問題:

1)樣本中,女生身高在組的人數(shù)有_________人;

2)在上面的扇形統(tǒng)計圖中,表示組的扇形的圓心角是_________°

3)已知該校共有男生800人,女生760人,請估計該校身高在之間的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有大小兩種貨車,3輛大貨車與2輛小貨車一次可以運貨21噸,2輛大貨車與4輛小貨車一次可以運貨22噸.

1)每輛大貨車和每輛小貨車一次各可以運貨多少噸?

2)現(xiàn)有這兩種貨車共10輛,要求一次運貨不低于35噸,則其中大貨車至少多少輛?(用不等式解答)

3)日前有23噸貨物需要運輸,欲租用這兩種貨車運送,要求全部貨物一次運完且每輛車必須裝滿.已知每輛大貨車一次運貨租金為300元,每輛小貨車一次運貨租金為200元,請列出所有的運輸方案井求出最少租金.

查看答案和解析>>

同步練習(xí)冊答案