【題目】王老師將1個黑球和若干個白球入放一個不透明的口袋并攪勻,讓若干學生進行摸球試驗,每次摸出一個球(有放回),統(tǒng)計數(shù)據(jù)如下表:

摸球的次數(shù)(n

100

150

200

500

800

1000

摸到黑球的次數(shù)(m

23

31

60

130

203

251

摸到黑球的頻率(m/n

0.230

0.207

0.300

0.260

0.254

(1)補全上表中的有關數(shù)據(jù),并根據(jù)上表數(shù)據(jù)估計從袋中摸出一個球是黑球的概率是

(2)估計口袋中白球的個數(shù);

(3)在(2)的條件下,若小強同學有放回地連續(xù)兩次摸球,用畫樹狀圖法或列表法計算他兩次都摸出白球的概率。

【答案】(1)0.251,0.25;(2)(2)估計口袋中有3個白球;(3).

【解析】

試題(1)用大量重復試驗中事件發(fā)生的頻率穩(wěn)定到某個常數(shù)來表示該事件發(fā)生的概率即可;

(2)列用概率公式列出方程求解即可;

(3)列表將所有等可能的結(jié)果列舉出來,然后利用概率公式求解即可.

試題解析:(1)(1)251÷1000=0.251;

∵大量重復試驗事件發(fā)生的頻率逐漸穩(wěn)定到0.25附近,

∴估計從袋中摸出一個球是黑球的概率是0.25;

(2)設口袋中白球有x個,依題意,得,解得x=3。經(jīng)檢驗,x=3是所列方程的根,且符合題意。答:估計口袋中有3個白球。

(3)1個黑球記為B,3個白球記為W1、W2、W3,列表如下:

第二次

第一次

B

W1

W2

W3

B

(B,B)

(B,W1

(B,W2

(B,W3

W1

(W1,B)

(W1,W1

(W1,W2

(W1,W3

W2

(W2,B)

(W2,W1

(W2,W2

(W2,W3

W3

(W3,B)

(W3,W1

(W3,W2

(W3,W3

由表可知總共有16種等可能的結(jié)果,其中兩次都摸出白球的結(jié)果有9種,所以兩次摸出白球的概率為span>.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一張四邊形紙片沿EF折疊,以下條件中能得出ADBC的條件個數(shù)是( )

①∠2=4:②∠2+3=180°;③∠1=6:④∠4=5

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學的許多創(chuàng)新與發(fā)展都曾居世界前列,其中“楊輝三角”(如圖)就是一例,它的發(fā)現(xiàn)比歐洲早五百年左右.

楊輝三角兩腰上的數(shù)都是1,其余每個數(shù)為它的上方(左右)兩數(shù)之和.事實上,這個三角形給出了n=12,34,56)的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律. 例如,在三角形中第三行的三個數(shù)1,2,1,恰好對應著展開式中各項的系數(shù);第四行的四個數(shù)1,3,3,1,恰好對應著展開式中各項的系數(shù),等等.

1)當n=4時,的展開式中第3項的系數(shù)是_________;

2)人們發(fā)現(xiàn),當n是大于6的自然數(shù)時,這個規(guī)律依然成立,那么的展開式中各項的系數(shù)的和為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的頂點坐標是(2,﹣1),且經(jīng)過點A(5,8)

(1)求該拋物線的解析式;

(2)設該拋物線與y軸相交于點B,與x軸相交于C、D兩點(點C在點D的左邊),試求點B、C、D的坐標;

(3)設點Px軸任一點,連接AP、BP.試求當AP+BP取得最小值時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的頂點都在方格線的交點(格點)上.

(1)將ABC繞C點按逆時針方向旋轉(zhuǎn)90°得到A′B′C′,請在圖中畫出A′B′C′.

(2)將ABC向上平移1個單位,再向右平移5個單位得到A″B″C″,請在圖中畫出A″B″C″.

(3)若將ABC繞原點O旋轉(zhuǎn)180°,A的對應點A1的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C經(jīng)過原點且與兩坐標軸分別交于點A和點B,點A的坐標為(0,2),DC在第一象限內(nèi)的一點且ODB=60°,解答下列各題:

(1)求線段AB的長及C的半徑;

(2)求B點坐標及圓心C的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC=2,∠B=C=40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE=40°DE交線段ACE

1)當∠BDA=115°時,∠EDC=____ __,∠DEC=__ ___;點DBC運動時,∠BAD逐漸變_______(填),∠BAD_______CDE(填“=”“>”“<”.

2)在點D的運動過程中,ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù).若不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為8的正方形ABCD中,點O為AD上一動點(4<OA<8),以O為圓心,OA的長為半徑的圓交邊CD于點M,連接OM,過點M作O的切線交邊BC于N.

(1)求證:△ODM∽△MCN;

(2)設DM=x,求OA的長(用含x的代數(shù)式表示);

(3)在點O的運動過程中,設CMN的周長為P,試用含x的代數(shù)式表示P,你能發(fā)現(xiàn)怎樣的結(jié)論?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在四邊形ABCD中,點EAD上,BCE=∠ACD=90°,BAC=∠D,BC=CE

(1)求證:AC=CD;

(2)若AC=AE,求DEC的度數(shù).

【答案】(1)證明見解析;(2)112.5°.

【解析】試題分析: 根據(jù)同角的余角相等可得到結(jié)合條件再加上 可證得結(jié)論;
根據(jù) 得到 根據(jù)等腰三角形的性質(zhì)得到 由平角的定義得到

試題解析: 證明:

ABCDEC中, ,

2∵∠ACD90°,ACCD,

∴∠1D45°

AEAC,

∴∠3567.5°,

∴∠DEC180°5112.5°

型】解答
結(jié)束】
21

【題目】一個零件的形狀如圖所示,工人師傅按規(guī)定做得∠B=90°,

AB3,BC4,CD12,AD13,假如這是一塊鋼板,你能幫工人師傅計算一下這塊鋼板的面積嗎?

查看答案和解析>>

同步練習冊答案