【題目】我國古代數(shù)學的許多創(chuàng)新與發(fā)展都曾居世界前列,其中“楊輝三角”(如圖)就是一例,它的發(fā)現(xiàn)比歐洲早五百年左右.
楊輝三角兩腰上的數(shù)都是1,其余每個數(shù)為它的上方(左右)兩數(shù)之和.事實上,這個三角形給出了(n=1,2,3,4,5,6)的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律. 例如,在三角形中第三行的三個數(shù)1,2,1,恰好對應(yīng)著展開式中各項的系數(shù);第四行的四個數(shù)1,3,3,1,恰好對應(yīng)著展開式中各項的系數(shù),等等.
(1)當n=4時,的展開式中第3項的系數(shù)是_________;
(2)人們發(fā)現(xiàn),當n是大于6的自然數(shù)時,這個規(guī)律依然成立,那么的展開式中各項的系數(shù)的和為_________.
【答案】6 128
【解析】
(1)當n=4時,的展開式的系數(shù)恰好對應(yīng)的是第五行的數(shù),根據(jù)第五行的數(shù)即刻得出答案;
(2)的展開式的系數(shù)恰好對應(yīng)第八行的數(shù),據(jù)圖寫出第八行的數(shù)求和即可.
解:(1)的展開式的系數(shù)恰好對應(yīng)的是第五行的數(shù),為:1,4,6,4,1,故的展開式中第3項的系數(shù)是6;
(2)據(jù)題可知第八行的數(shù)為:1,7,21,35,35,21,7,1.故的展開式中各項的系數(shù)的和為:1+7+21+35+35+21+7+1=128.
故答案為:(1)6;(2)128.
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用180元購進甲種玩具的件數(shù)與用300元購進乙種玩具的件數(shù)相同.
(1)求每件甲種、乙種玩具的進價分別是多少元?
(2)商場計劃購進甲、乙兩種玩具共50件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1050元,商場共有幾種進貨方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某教育科技公司銷售A,B兩種多媒體,這兩種多媒體的進價與售價如表所示:
該教育科技公司計劃購進兩種多媒體共50套,共需資金132萬元 .
(1)該教育科技公司計劃購進A,B兩種多媒體各多少套?
(2)經(jīng)過市場調(diào)查后,該商店決定在原計劃50套多媒體的基礎(chǔ)上,減少A的購進數(shù)量,增加B 的購進數(shù)量,已知B種多媒體增加的數(shù)量是A種多媒體減少數(shù)量的1.5倍,全部銷售后可以獲取毛利潤21萬元,問實際購進A種多媒體多少套?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象與x軸交于A、B兩點,B點的坐標為(3,0),與y軸交于點C(0,-3),點P是直線BC下方拋物線上的一個動點.
(1)求二次函數(shù)解析式;
(2)連接PO,PC,并將△POC沿y軸對折,得到四邊形.是否存在點P,使四邊形為菱形?若存在,求出此時點P的坐標;若不存在,請說明理由;
(3)當點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC.
(1)尺規(guī)作圖:過點C作AB的垂線交AB于點O.不寫作法,保留作圖痕跡;
(2)分別以直線AB,OC為x軸,y軸建立平面直角坐標系,使點B,C 均在正半軸上.若AB=7.5,OC=4.5,∠A=45°,寫出點B關(guān)于y軸的對稱點D的坐標;
(3)在(2)的條件下,求△ACD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個均勻的立方體骰子六個面上標有數(shù)1,2,3,4,5,6,若以連續(xù)擲兩次骰子得到的數(shù)作為點的坐標,則點落在反比例函數(shù)圖象與坐標軸所圍成區(qū)域內(nèi)(含落在此反比例函數(shù)的圖象上的點)的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩家公司共有150名工人,甲公司每名工人月工資為1200元,乙公司每名工人月工資為1500元,兩家公司每月需付給工人工資共計19.5萬元.
(1)求甲、乙公司分別有多少名工人;
(2)經(jīng)營一段時間后發(fā)現(xiàn),乙公司工人人均月產(chǎn)值是甲公司工人的3.2倍,于是甲公司決定內(nèi)部調(diào)整,選拔了本公司部分工人到新崗位工作.調(diào)整后,原崗位工人和新崗位工人的人均月產(chǎn)值分別為調(diào)整前的1.2倍和4倍,且甲公司新崗位工人的月生產(chǎn)總值不超過乙公司月生產(chǎn)總值的40%,甲公司的月生產(chǎn)總值不少于乙公司的月生產(chǎn)總值,求甲公司選拔到新崗位有多少人?(甲公司調(diào)整前人均月產(chǎn)值設(shè)定為p元)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】王老師將1個黑球和若干個白球入放一個不透明的口袋并攪勻,讓若干學生進行摸球試驗,每次摸出一個球(有放回),統(tǒng)計數(shù)據(jù)如下表:
摸球的次數(shù)(n) | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到黑球的次數(shù)(m) | 23 | 31 | 60 | 130 | 203 | 251 |
摸到黑球的頻率(m/n) | 0.230 | 0.207 | 0.300 | 0.260 | 0.254 |
(1)補全上表中的有關(guān)數(shù)據(jù),并根據(jù)上表數(shù)據(jù)估計從袋中摸出一個球是黑球的概率是 ;
(2)估計口袋中白球的個數(shù);
(3)在(2)的條件下,若小強同學有放回地連續(xù)兩次摸球,用畫樹狀圖法或列表法計算他兩次都摸出白球的概率。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩同學的家與學校的距離均為3000米.甲同學先步行600米,然后乘公交車去學校、乙同學騎自行車去學校.已知甲步行速度是乙騎自行車速度的,公交車的速度是乙騎自行車速度的2倍.甲乙兩同學同時從家發(fā)去學校,結(jié)果甲同學比乙同學早到2分鐘.
(1)求乙騎自行車的速度;
(2)當甲到達學校時,乙同學離學校還有多遠?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com