【題目】如圖,一艘海輪位于燈塔P的東北方向,距離燈塔80海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東30°方向上的B處.

1)若燈塔P周圍50海里范圍內(nèi)有暗礁,海輪從A處到B處的途中,是否有觸礁危險(xiǎn)?

2)若海輪以每小時(shí)30海里的速度從A處到B處,試判斷海輪能否在5小時(shí)內(nèi)到達(dá)B處,并說明理由.(參考數(shù)據(jù):≈1.41≈1.73,≈2.45

【答案】1)沒有觸礁危險(xiǎn);(2)海輪以每小時(shí)30海里的速度從A處到B處,海輪不能在5小時(shí)內(nèi)到達(dá)B處,理由見解析

【解析】

1)作PCABC,則∠PCA=∠PCB90°,由題意得:PA80,∠APC45°,∠BPC60°,得出APC是等腰直角三角形,∠B30°,求出 ,即可得出結(jié)論;

2)由直角三角形的性質(zhì)得出 ,得出 ,求出海輪以每小時(shí)30海里的速度從A處到B處所用的時(shí)間,即可得出結(jié)論.

解:(1)作PCABC,如圖所示:

則∠PCA=∠PCB90°,

由題意得:PA80,∠APC45°,∠BPC90°30°60°,

∴△APC是等腰直角三角形,∠B30°,

(海里)>50(海里),

∴若燈塔P周圍50海里范圍內(nèi)有暗礁,海輪從A處到B處的途中,沒有觸礁危險(xiǎn);

2)海輪以每小時(shí)30海里的速度從A處到B處,海輪不能在5小時(shí)內(nèi)到達(dá)B處,理由如下:

∵∠PCB90°,∠B30°,

,

,

∴海輪以每小時(shí)30海里的速度從A處到B處所用的時(shí)間為:(小時(shí))>5小時(shí),

∴海輪以每小時(shí)30海里的速度從A處到B處,海輪不能在5小時(shí)內(nèi)到達(dá)B處.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一拋物線與軸相交于,兩點(diǎn),其頂點(diǎn)在折線段上移動(dòng),已知點(diǎn),的坐標(biāo)分別為,,若點(diǎn)橫坐標(biāo)的最小值為0,則點(diǎn)橫坐標(biāo)的最大值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:如圖1,在正多邊形A1A2A3…An的邊A2A3上任取一不與點(diǎn)A2重合的點(diǎn)B2,并以線段A1B2為邊在線段A1A2的上方作以正多邊形A1B2B3…Bn,把正多邊形A1B2B3…Bn叫正多邊形A1A2…An的準(zhǔn)位似圖形,點(diǎn)A3稱為準(zhǔn)位似中心.

特例論證:(1)如圖2已知正三角形A1A2A3的準(zhǔn)位似圖形為正三角形A1B2B3,試證明:隨著點(diǎn)B2的運(yùn)動(dòng),∠B3A3A1的大小始終不變.

數(shù)學(xué)思考:(2)如圖3已知正方形A1A2A3A4的準(zhǔn)位似圖形為正方形A1B2B3B4,隨著點(diǎn)B2的運(yùn)動(dòng),∠B3A3A4的大小始終不變?若不變,請(qǐng)求出∠B3A3A4的大。蝗舾淖,請(qǐng)說明理由.

歸納猜想:(3)在圖(1)的情況下:①試猜想∠B3A3A4的大小是否會(huì)發(fā)生改變?若不改變,請(qǐng)用含n的代數(shù)式表示出∠B3A3A4的大小(直接寫出結(jié)果);若改變,請(qǐng)說明理由.②∠B3A3A4+B4A4A5+B5A5A6+…+BnAnA1=   (用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,AC為弦,且平分∠BAD,AD⊥CD,垂足為D.

(1) 求證:CD是⊙O的切線;

(2) 若⊙O的直徑為4,AD=3,試求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,D為⊙O上一點(diǎn),以AD為斜邊作△ADC,使∠C=90°,CAD=DAB

(1)求證:DC是⊙O的切線;

(2)若AB=9,AD=6,求DC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人同時(shí)騎自行車分別從A、B兩地出發(fā)到AB之間的C地,且A、B、C三地在同一直線上.當(dāng)乙到達(dá)C地時(shí)甲還未到達(dá),乙在C地等了5分鐘,接到甲的電話說他的自行車壞了需要工具修理,于是乙在C地拿了工具箱立即以原來倍的速度前往甲壞車處,乙與甲會(huì)合后幫助甲花了10分鐘修好自行車,然后兩人以甲原來倍的速度騎行同時(shí)到達(dá)C地.甲乙兩人距C地的距離之和y(米)與甲所用時(shí)間x(分鐘)之間的函數(shù)關(guān)系如圖所示(乙接電話和找工具箱的時(shí)間忽略不計(jì)),則AB兩地之間的距離為___米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yx軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C

1)點(diǎn)P為線段BC上方拋物線上(不與B、C重合)的一動(dòng)點(diǎn),連接PC、PB,當(dāng)PBC面積最大時(shí),在y軸找點(diǎn)D,使得PDOD的值最小時(shí),求這個(gè)最小值.

2)如圖2,拋物線對(duì)稱軸與x軸交于點(diǎn)K,與線段BC交于點(diǎn)M,在對(duì)稱軸上取一點(diǎn)R,使得KR12(點(diǎn)R在第一象限),連接BR.已知點(diǎn)N為線段BR上一動(dòng)點(diǎn),連接MN,將BMN沿MN翻折到B'MN.當(dāng)B'MNBMR重疊部分(如圖中的MNQ)為直角三角形時(shí),直接寫出此時(shí)點(diǎn)B'的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形繞點(diǎn)旋轉(zhuǎn)至矩形位置,此時(shí)的中點(diǎn)恰好與點(diǎn)重合,于點(diǎn).,則的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小元設(shè)計(jì)的“過圓上一點(diǎn)作圓的切線”的尺規(guī)作圖過程

已知:如圖,OO上一點(diǎn)P.

求作:過點(diǎn)PO的切線.

作法:如圖,

作射線OP;

在直線OP外任取一點(diǎn)A,以點(diǎn)A為圓心,AP為半徑作A,與射線OP交于另一點(diǎn)B;

連接并延長BAA交于點(diǎn)C

作直線PC;

則直線PC即為所求.

根據(jù)小元設(shè)計(jì)的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

(2)完成下面的證明:

證明: BCA的直徑,

∴∠BPC=90°(____________)(填推理的依據(jù))

OPPC

OPO的半徑,

PCO的切線(____________)(填推理的依據(jù))

查看答案和解析>>

同步練習(xí)冊(cè)答案