【題目】如圖,在ABC中,ABAC,點DAC中點,點EBD延長線上,且BDDE35,連接CE,tanBACCB,則線段EC長為_____

【答案】

【解析】

如圖,作BFACF,EHACH.由tanBAF,可設(shè)BF3k,AF4k,則ACCF、DF都可以用k的代數(shù)式表示,易證△EHD∽△BFD,進(jìn)而可得點H與點A重合,AEAC,由此可推出ECAC,然后在直角△BCF中利用勾股定理構(gòu)建方程,求出k即可解決問題.

解:如圖,作BFACF,EHACH

tanBAF,∴設(shè)BF3k,AF4k,則ABAC5k

CFk,AD=CD=2.5k,∴DF2.5kk=1.5k,

∵∠EHD=∠BFD90°,∠EDH=∠BDF,∴△EHD∽△BFD

,即,

DH2.5k,EH5k,

ADDC2.5k,∴DADH,∴點H與點A重合,

ACAE5k,∴ECAE5k,

BC,解得:k,

EC

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,矩形ABCD中,AD6,DC7,菱形EFGH的三個頂點E,GH分別在矩形ABCD的邊AB,CD,DA上,AH2,連接CF

1)若DG2,求證四邊形EFGH為正方形;

2)若DG6,求FCG的面積;

3)當(dāng)DG為何值時,FCG的面積最小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y1x2+bx+c與直線y22x+m相交于A1,4)、B(﹣1,n)兩點.

1)求y1y2的解析式;

2)直接寫出y1y2的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象過點.

1)求拋物線的解析式;

2)在拋物線的對稱軸上是否存在一點P,使得△PAC的周長最小,若存在,請求出點P的坐標(biāo)及△PAC的周長;若不存在,請說明理由;

3)在(2)的條件下,在x軸上方的拋物線上是否存在點M(不與C點重合),使得?若存在,請求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)概念

若點的內(nèi)部,且、中有兩個角相等,則稱等角點,特別地,若這三個角都相等,則稱強(qiáng)等角點”.

理解概念

1)若點的等角點,且,則的度數(shù)是 .

2)已知點的外部,且與點的異側(cè),并滿足,作的外接圓,連接,交圓于點.當(dāng)的邊滿足下面的條件時,求證:的等角點.(要求:只選擇其中一道題進(jìn)行證明。

①如圖①,

②如圖②,

深入思考

3)如圖③,在中,、、均小于,用直尺和圓規(guī)作它的強(qiáng)等角點.(不寫作法,保留作圖痕跡)

4)下列關(guān)于等角點、強(qiáng)等角點的說法:

①直角三角形的內(nèi)心是它的等角點;

②等腰三角形的內(nèi)心和外心都是它的等角點;

③正三角形的中心是它的強(qiáng)等角點;

④若一個三角形存在強(qiáng)等角點,則該點到三角形三個頂點的距離相等;

⑤若一個三角形存在強(qiáng)等角點,則該點是三角形內(nèi)部到三個頂點距離之和最小的點,其中正確的有 .(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD中,對角線AC平分∠DCB,且ADABCDCB

1)求證:∠B+D180°;

2)如圖2,在AC上取一點E,使得BECD,且BECE,點F在線段BC上,連接AF,且ABAF,求證:AECF;

3)如圖3,在(2)的條件下,若BEAF交于點G,BFAB27,求tanBGF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得(  )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點△ABC(頂點在網(wǎng)格線的交點上)的頂點A、C的坐標(biāo)分別為A(﹣35)、C0,3).

1)請在網(wǎng)格所在的平面內(nèi)畫出平面直角坐標(biāo)系,并寫出點B的坐標(biāo).

2)將△ABC繞著原點順時針旋轉(zhuǎn)90°得△A1B1C1,畫出△A1B1C1

3)在直線y1上存在一點P,使PA+PC的值最小,請直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系中的圖形MN,給出如下定義:如果點P為圖形M上任意一點,點Q為圖形N上任意一點,那么稱線段PQ長度的最小值為圖形M,N近距離,記作 dM,N).若圖形M,N近距離小于或等于1,則稱圖形M,N互為可及圖形

1)當(dāng)⊙O的半徑為2時,

①如果點A01),B3,4),那么dA,⊙O=_______,dB,⊙O= ________;

②如果直線與⊙O互為可及圖形,求b的取值范圍;

2)⊙G的圓心G軸上,半徑為1,直線x軸交于點C,與y軸交于點D,如果⊙G和∠CDO互為可及圖形,直接寫出圓心G的橫坐標(biāo)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案