【題目】小王騎車從甲地到乙地,小李騎車從乙地到甲地,小王的速度小于小李的速度,兩人同時出發(fā),沿同一條公路勻速前進.圖中的折線表示兩人之間的距離與小王的行駛時間之間的函數(shù)關系.

請你根據(jù)圖象進行探究:

1)小王和小李的速度分別是多少?

2)求線段所表示的之間的函數(shù)解析式,并寫出自變量的取值范圍.

【答案】1)小王和小李的速度分別是、;(2

【解析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以分別求得王和小李的速度;
根據(jù)中的結果和圖象中的數(shù)據(jù)可以求得點C的坐標,從而可以解答本題.

解:(1)由圖可得,

小王的速度為:

小李的速度為:,

答:小王和小李的速度分別是;

2)小李從乙地到甲地用的時間為:

當小李到達甲地時,兩人之間的距離為:

的坐標為,

設線段所表示的之間的函數(shù)解析式為,

,解得,

即線段所表示的之間的函數(shù)解析式是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從地面上的點A看一山坡上的電線桿PQ,測得桿頂端點P的仰角是45°,向前走6m到達B點,測得桿頂端點P和桿底端點Q的仰角分別是60°30°

1)求∠BPQ的度數(shù);

2)求該電線桿PQ的高度(結果精確到1m).備用數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將ADE沿AE對折至AFE,延長EF交邊BC于點G,連接AG、CF.則下列結論:①△ABG≌△AFG;②BG=CG;③AGCF;④SEGC=SAFE;⑤∠AGB+∠AED=145°.其中正確的個數(shù)是( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 RtABC 中,∠C=90°,AD 平分∠BAC BC 于點 D,O AB 上一點,經(jīng)過點 A、D 的⊙O 分別交 AB、AC 于點 E、F

1)求證:BC 是⊙O 切線;

2)設 AB=mAF=n,試用含 m、n 的代數(shù)式表示線段 AD 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD;

2)分別以點CD為圓心,CD長為半徑作弧,交于點M,N

3)連接OM,MN

根據(jù)以上作圖過程及所作圖形,下列結論中錯誤的是(

A. ∠COM=∠CODB. OM=MN,則∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠ACB=45°,DAC上一點,AD=5,連接BD,將△ABD沿BD翻折至△EBD,點A的對應點E點恰好落在邊BC上.延長BC至點F,連接DF,若CF=2,tanABD=,則DF長為( 。

A.B.C.5D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是實驗室中的一種擺動裝置,BC在地面上,支架ABC是底邊為BC的等腰直角三角形,擺動臂AD可繞點A旋轉,擺動臂DM可繞點D旋轉,AD30,DM10

1)在旋轉過程中,

①當A,D,M三點在同一直線上時,求AM的長.

②當A,DM三點為同一直角三角形的頂點時,求AM的長.

2)若擺動臂AD順時針旋轉90°,點D的位置由ABC外的點D1轉到其內的點D2處,連結D1D2,如圖2,此時∠AD2C135°,CD260,求BD2的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①線段的直徑,上,在射線上運動(不與點重合),直徑的垂線的平行線相交于點連接

的取值范圍;

如圖②點是線段的交點,若求證:直線相切;

如圖③當時,連接判斷四邊形的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店以每件50元的價格購進兩種服裝,已知銷售30種服裝和40種服裝共獲利潤1000元,銷售40種服裝和50種服裝共獲利潤1300元.

1)求兩種服裝每件的售價;

2)若該服裝店準備購進兩種服裝共80件,并規(guī)定種服裝不少于種服裝的,設購進種服裝件,求利潤(元)與(件)之間的函數(shù)解析式,并求出當取何值時,利潤最大,最大利潤為多少?

查看答案和解析>>

同步練習冊答案