【題目】在多項式的乘法公式中,完全平方公式是其中重要的一個.
(1)請補全完全平方公式的推導過程:
,
,
.
(2)如圖,將邊長為的正方形分割成Ⅰ、Ⅱ、Ⅲ、Ⅳ四部分,請你結合圖給出完全平方公式的幾何解釋.
(3)用完全平方公式求的值.
【答案】(1)ab,ab,2ab;(2)邊長為a+b的正方形的面積,等于邊長分別為a和b的兩個小正方形面積的和,再加上兩個長為a,寬為b的長方形的面積,見解析;(3)357604.
【解析】
(1)依據(jù)多項式乘多項式法則,即可得到結果;
(2)依據(jù)邊長為a+b的正方形分割成Ⅰ、Ⅱ、Ⅲ、Ⅳ四部分,即可得到完全平方公式的幾何解釋;
(3)利用完全平方公式,即可得到5982的值.
(1)(a+b)2=(a+b)(a+b)
=a2+ab+ab+b2
=a2+2ab+b2
故答案為:ab,ab,2ab;
(2)邊長為a+b的正方形的面積,等于邊長分別為a和b的兩個小正方形面積的和,再加上兩個長為a,寬為b的長方形的面積.
(3)5982=[(600+(-2)]2
=6002+2×600×(-2)+(-2)2
=360000-2400+4
=357604.
或5982=(600-2)2
=6002-2×600×2+22
=360000-2400+4
=357604.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使△ADC與△BDA相似,可以添加一個條件.下列添加的條件中錯誤的是( )
A. ∠ACD=∠DAB B. AD=DE C. AD·AB=CD·BD D. AD2=BD·CD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象相交于A(2,3),B(-3,m)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;
(3)過點B作BC⊥x軸,垂足為點C,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l為y=x,過點A1(1,0)作A1B1⊥x軸,與直線l交于點B1,以原點O為圓心,OB1長為半徑畫圓弧交x軸于點A2;再作A2B2⊥x軸,交直線l于點B2,以原點O為圓心,OB2長為半徑畫圓弧交x軸于點A3…,按此作法進行下去,則的長為______(用含n,π的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著生活水平的提高,人們對空氣質量的要求也越來越高。為了了解月中旬長春市城區(qū)的空氣質量情況,某校“綜合實踐環(huán)境調查”小組,從天氣預報網(wǎng)抽取了朝陽區(qū)和南關區(qū)這兩個城區(qū)年月日——年月日的空氣質量指數(shù),作為樣本進行統(tǒng)計,過程如下,請補充完整.
收集數(shù)據(jù)
朝陽區(qū) | ||||||||||
南關區(qū) |
整理、描述數(shù)據(jù)
按下表整理、描述這兩城區(qū)空氣質量指數(shù)的數(shù)據(jù).
空氣質量 | 優(yōu) | 良 | 輕微污染 | 中度污染 | 重度污染 |
朝陽區(qū) | |||||
南關區(qū) |
(說明:空氣質量指數(shù)時,空氣質量為優(yōu);空氣質量指數(shù)時,空氣質量為良;空氣質量指數(shù)時,空氣質量為輕微污染;空氣質量指數(shù)時,空氣質量為中度污染;空氣質量指數(shù)時,空氣質量為重度污染.)
分析數(shù)據(jù)
兩城區(qū)的空氣質量指數(shù)的平均數(shù)、中位數(shù)、方差如下表所示.
城區(qū) | 平均數(shù) | 中位數(shù) | 方差 |
朝陽區(qū) | |||
南關區(qū) |
請將以上兩個表格補充完整.
得出結論可以推斷出哪個城區(qū)這十天中空氣質量情況比較好?請至少從兩個不同的角度說明推斷的合理性.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,做的平分線,在的兩邊上分別截取,再以點為圓心,線段長為半徑畫弧,交于點,連接.
(1)求證:四邊形是菱形;
(2)尺規(guī)作圖:作線段的垂直平分線,分別交于點,于點,連接(不寫做法,保留作圖痕跡);
(3)當時,判斷的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙、丙、丁四位同學進行一次乒乓球單打比賽,要從中選出兩位同學打第一場比賽.
(1)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學的概率.
(2)若已確定甲打第一場,再從其余三位同學中隨機選取一位,求恰好選中乙同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P時直線AC下方拋物線上的動點.
(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,下列結論:①二次三項式ax2+bx+c的最大值為4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的兩根之和為﹣2;④使y≤3成立的x的取值范圍是x≥0;⑤拋物線上有兩點P(x1,y1)和Q(x2,y2),若x1<﹣1<x2,且x1+x2>﹣2,則y1<y2其中正確的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com