【題目】如圖,⊙O的半徑為2,O到頂點(diǎn)A的距離為5,點(diǎn)B在⊙O上,點(diǎn)P是線段AB的中點(diǎn),若B在⊙O上運(yùn)動(dòng)一周.
(1)點(diǎn)P的運(yùn)動(dòng)路徑是一個(gè)圓;
(2)△ABC始終是一個(gè)等邊三角形,直接寫出PC長(zhǎng)的取值范圍.
【答案】(1)見解析;(2)≤PC≤
【解析】
(1)連接OA、OB,取OA的中點(diǎn)H,連接OB,HP,則HP是△ABO的中位線,得出HP=OB=1,即P點(diǎn)到H點(diǎn)的距離固定為1,即可得出結(jié)論;
(2)由等邊三角形的性質(zhì)和直角三角形的性質(zhì)分別求出PC的最小值和最大值即可.
(1)解:連接OA、OB,取OA的中點(diǎn)H,連接HP,如圖1所示:
則HP是△ABO的中位線,
∴HP=OB=1,
∴P點(diǎn)到H點(diǎn)的距離固定為1,
∴B在⊙O上運(yùn)動(dòng)一周,點(diǎn)P運(yùn)動(dòng)的路徑是以點(diǎn)H為圓心,半徑為1的一個(gè)圓;
(2)解:連接AO并延長(zhǎng)AO交⊙O于點(diǎn)M、N,如圖2所示:
∵△ABC是等邊三角形,點(diǎn)P是線段AB的中點(diǎn),
∴PC⊥AB,PA=PB=AB=BC,
∴PC=PA=AB,
當(dāng)點(diǎn)B運(yùn)動(dòng)到點(diǎn)M位置時(shí),點(diǎn)P運(yùn)動(dòng)到點(diǎn)P'位置,PC最短,
∵AM=OA﹣OM=5﹣2=3,
∴AP'=AM=,
∴PC=;
當(dāng)點(diǎn)B運(yùn)動(dòng)到點(diǎn)N位置時(shí),點(diǎn)P運(yùn)動(dòng)到點(diǎn)P'位置,PC最長(zhǎng),
∵AN=OA+ON=5+2=7,
∴AP'=AN=,
∴PC=;
∴PC長(zhǎng)的取值范圍是≤PC≤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線C1:y=x2﹣2x與拋物線C2:y=ax2+bx開口大小相同、方向相反,它們相交于O,C兩點(diǎn),且分別與x軸的正半軸交于點(diǎn)B,點(diǎn)A,OA=2OB.
(1)求拋物線C2的解析式;
(2)在拋物線C2的對(duì)稱軸上是否存在點(diǎn)P,使PA+PC的值最?若存在,求出點(diǎn)P的坐標(biāo),若不存在,說(shuō)明理由;
(3)M是直線OC上方拋物線C2上的一個(gè)動(dòng)點(diǎn),連接MO,MC,M運(yùn)動(dòng)到什么位置時(shí),△MOC面積最大?并求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(0,2),B(2,2),C(-1,-2),拋物線F:與直線x=-2交于點(diǎn)P.
(1)當(dāng)拋物線F經(jīng)過(guò)點(diǎn)C時(shí),求它的表達(dá)式;
(2)設(shè)點(diǎn)P的縱坐標(biāo)為,求的最小值,此時(shí)拋物線F上有兩點(diǎn),,且≤-2,比較與的大;
(3)當(dāng)拋物線F與線段AB有公共點(diǎn)時(shí),直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y=x2+2x﹣3.
拋物線 | 頂點(diǎn)坐標(biāo) | 與x軸交點(diǎn)坐標(biāo) | 與y軸交點(diǎn)坐標(biāo) | |
拋物線C:y=x2+2x﹣3 | A(_____) | B(_____) | (1,0) | (0,﹣3) |
變換后的拋物線C1 | ______ | ______ | ______ | ______ |
(1)補(bǔ)全表中A,B兩點(diǎn)的坐標(biāo),并在所給的平面直角坐標(biāo)系中畫出拋物線C.
(2)將拋物線C上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)變?yōu)樵瓉?lái)的,可證明得到的曲線仍是拋物線,(記為C1),求拋物線C1對(duì)應(yīng)的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
定義:與圓的所有切線和割線都有公共點(diǎn)的幾何圖形叫做這個(gè)圓的關(guān)聯(lián)圖形.
問(wèn)題:⊙O的半徑為1,畫一個(gè)⊙O的關(guān)聯(lián)圖形.
在解決這個(gè)問(wèn)題時(shí),小明以O為原點(diǎn)建立平面直角坐標(biāo)系xOy進(jìn)行探究,他發(fā)現(xiàn)能畫出很多⊙O的關(guān)聯(lián)圖形,例如:⊙O本身和圖1中的△ABC(它們都是封閉的圖形),以及圖2中以O為圓心的(它是非封閉的形),它們都是⊙O的關(guān)聯(lián)圖形.而圖2中以P,Q為端點(diǎn)的一條曲線就不是⊙O的關(guān)聯(lián)圖形.
參考小明的發(fā)現(xiàn),解決問(wèn)題:
(1)在下列幾何圖形中,①⊙O的外切正多邊形;②⊙O的內(nèi)接正多邊形;③⊙O的一個(gè)半徑大于1的同心圓;⊙O的關(guān)聯(lián)圖形是______(填序號(hào)).
(2)若圖形G是⊙O的關(guān)聯(lián)圖形,并且它是封閉的,則圖形G的周長(zhǎng)的最小值是____.
(3)在圖2中,當(dāng)⊙O的關(guān)聯(lián)圖形的弧長(zhǎng)最小時(shí),經(jīng)過(guò)D,E兩點(diǎn)的直線為y=____.
(4)請(qǐng)你在備用圖中畫出一個(gè)⊙O的關(guān)聯(lián)圖形,所畫圖形的長(zhǎng)度l小于(2)中圖形G的周長(zhǎng)的最小值,并寫出l的值(直接畫出圖形,不寫作法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】要建一個(gè)如圖所示的面積為300m2的長(zhǎng)方形圍欄,圍欄總長(zhǎng)50m,一邊靠墻(墻長(zhǎng)25m).
(1)求圍欄的長(zhǎng)和寬;
(2)能否圍成面積為400m2的長(zhǎng)方形圍欄?如果能,求出該長(zhǎng)方形的長(zhǎng)和寬,如果不能請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,圖中的小方格都是邊長(zhǎng)為1的正方形,△ABC與△A'B'C'是以點(diǎn)O為位似中心的位似圖形,它們的頂點(diǎn)都在小正方形的頂點(diǎn)上.
(1)畫出位似中心點(diǎn)O;
(2)直接寫出△ABC與△A′B′C′的位似比_______
(3)以位似中心O為坐標(biāo)原點(diǎn),以格線所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,畫出△A′B′C′關(guān)于點(diǎn)O中心對(duì)稱的△A″B″C″,并直接寫出△A″B″C″各頂點(diǎn)的坐標(biāo)._______;_______;_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】高爾基說(shuō):“書,是人類進(jìn)步的階梯.”閱讀可以豐富知識(shí)、拓展視野、充實(shí)生活等諸多益處.為了解學(xué)生的課外閱讀情況,某校隨機(jī)抽查了部分學(xué)生閱讀課外書冊(cè)數(shù)的情況,并繪制出如下統(tǒng)計(jì)圖,其中條形統(tǒng)計(jì)圖因?yàn)槠茡p丟失了閱讀5冊(cè)書數(shù)的數(shù)據(jù).
(1)求條形圖中丟失的數(shù)據(jù),并寫出閱讀書冊(cè)數(shù)的眾數(shù)和中位數(shù);
(2)根據(jù)隨機(jī)抽查的這個(gè)結(jié)果,請(qǐng)估計(jì)該校1200名學(xué)生中課外閱讀5冊(cè)書的學(xué)生人數(shù);
(3)若學(xué)校又補(bǔ)查了部分同學(xué)的課外閱讀情況,得知這部分同學(xué)中課外閱讀最少的是6冊(cè),將補(bǔ)查的情況與之前的數(shù)據(jù)合并后發(fā)現(xiàn)中位數(shù)并沒(méi)有改變,試求最多補(bǔ)查了多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的直徑AB為10cm,弦BC為5cm,D、E分別是∠ACB的平分線與⊙O,AB的交點(diǎn),P為AB延長(zhǎng)線上一點(diǎn),且PC=PE.
(1)求AC、AD的長(zhǎng);
(2)試判斷直線PC與⊙O的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com