【題目】“十一”期間,小華一家人開車到距家100千米的景點(diǎn)旅游,出發(fā)前,汽車油箱內(nèi)儲(chǔ)油35升,當(dāng)行駛80千米時(shí),發(fā)現(xiàn)油箱余油量為25升(假設(shè)行駛過程中汽要車的耗油量是均勻的)
(1)求該車平均每千米的耗油量;
(2)寫出剩余油量Q(升)與行駛路程x(千米)之間的關(guān)系式;
(3)當(dāng)油箱中剩余油量低于3升時(shí),汽車將自動(dòng)報(bào)警,如果往返途中不加油,他們能否在汽車報(bào)警前回到家?請(qǐng)說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是直線AB上一點(diǎn),OC為任意一條射線,OD平分∠BOC,OE平分∠AOC.
(1)指出圖中∠AOD與∠BOE的補(bǔ)角;
(2)試判斷∠COD與∠COE具有怎樣的數(shù)量關(guān)系.并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從2開始的連續(xù)偶數(shù)相加,它們和的情況如下表:
加數(shù)的個(gè)數(shù)(n) | 和(S) |
1 | 2=1×2 |
2 | 2+4=6=2×3 |
3 | 2+4+6=12=3×4 |
4 | 2+4+6+8=20=4×5 |
5 | 2+4+6+8+10=30=5×6 |
… | … |
(1)根據(jù)表中的規(guī)律,直接寫出2+4+6+8+10+12+14=________
(2)根據(jù)表中的規(guī)律猜想:S=2+4+6+8+…+2n=___________(用n的代數(shù)式表示);
(3)利用上題中的公式計(jì)算102+104+106+…+200的值(要求寫出計(jì)算過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的內(nèi)心,將△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后,I的對(duì)應(yīng)點(diǎn)I'的坐標(biāo)為( 。
A. (﹣2,3) B. (﹣3,2) C. (3,﹣2) D. (2,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=(k>0,x>0)的圖象經(jīng)過菱形OACD的頂點(diǎn)D和邊AC的中點(diǎn)E,若菱形OACD的邊長為3,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=80°,點(diǎn)P是射線AM上動(dòng)點(diǎn)(與A不重合),BC、BD分別平分∠ABP和∠PBN,交射線AM于C、D.
(1)求∠CBD的度數(shù);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),那么∠APB:∠ADB的度數(shù)比值是否隨之發(fā)生變化?若不變,請(qǐng)求出這個(gè)比值;若變化,請(qǐng)找出變化規(guī)律;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠ACB=∠ABD時(shí),求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,老師出示了如下的題目:“在等邊△ABC中,點(diǎn)E在AB上,點(diǎn)D在CB的延長線上,且ED=EC,如圖1,試確定線段AE與DB的大小關(guān)系,并說明理由.”小敏與同桌小聰討論后,進(jìn)行了如下解答:
(1)特殊情況,探索結(jié)論:當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖1,確定線段AE與DB的大小關(guān)系,請(qǐng)你直接寫出結(jié)論:AE DB(填“≥”,“≤”或“=”)
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE DB(填“≥”,“≤”或“=”).理由如下:如圖3,過點(diǎn)E做EF∥BC,交AC于點(diǎn)F.(請(qǐng)你完成解答過程)
(3)拓展結(jié)論,設(shè)計(jì)新題.
已知O是等邊三角形ABD的邊BD的中點(diǎn),AB=4,EF分別為射線AB、DA上一動(dòng)點(diǎn),且∠EOF=120°,若AF=1,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,CD是∠ACB的角平分線,CE是AB邊上的高,
(1)若∠A=40°,∠B=60°,求∠DCE的度數(shù).
(2)若∠A=m,∠B=n,求∠DCE.(用m、n表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com