【題目】如圖O是直線AB上一點,OC為任意一條射線,OD平分BOC,OE平分AOC

(1)指出圖中AOD與BOE的補角;

(2)試判斷COD與COE具有怎樣的數(shù)量關系并說明理由

【答案】1AOD的補角為BOD,COD;BOE的補角為AOE,COE;

2COD+COE=90,理由參見解析

【解析】

試題分析:1兩個角相加等于180度即為互為補角由互為補角意義,和已知的角平分線即可得出結論;2利用平角是180度和角平分線意義即可得出結論

試題解析:1因為AOD+BOD=180,所以AOD的補角為BOD,又因為OD平分BOC,所以COD=BOD,所以AOD的補角為BODCOD;同理因為AOE+BOE=180所以BOE的補角為AOE,又因為OE平分AOC,所以COE=AOE所以BOE的補角為AOE,COE;2OD平分BOC,OE平分AOC,∴∠COE=AOCCOD=BOC, ∴∠COD+COE=BOC+AOC=AOB=90COD與COE的數(shù)量關系是COD+COE=90

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

(實踐操作)三角尺中的數(shù)學

數(shù)學實踐活動課上,“奮進”小組將一副直角三角尺的直角頂點疊放在一起,如圖1,使直角頂點重合于點C

(問題發(fā)現(xiàn))

1填空:如圖1,若∠ACB145°,則∠ACE的度數(shù)是   ,∠DCB的度數(shù)   ,∠ECD的度數(shù)是   

如圖1,你發(fā)現(xiàn)∠ACE與∠DCB的大小有何關系?∠ACB與∠ECD的大小又有何關系?請直接寫出你發(fā)現(xiàn)的結論.

(類比探究)

2)如圖2,當△ACD與△BCE沒有重合部分時,上述中你發(fā)現(xiàn)的結論是否還依然成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知(x3+mx+n)(x23x+4)展開式中不含 x3 x2項.

1)求m、n的值;

2)當 m、n取第(1)小題的值時,求(m+n)(m2mn+n2)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

已知:如圖1,等邊A1A2A3內(nèi)接于⊙O,點P上的任意一點,連接PA1,PA2,PA3,可證:PA1+PA2=PA3,從而得到:是定值.

(1)以下是小紅的一種證明方法,請在方框內(nèi)將證明過程補充完整;

證明:如圖1,作∠PA1M=60°,A1MA2P的延長線于點M.

∵△A1A2A3是等邊三角形,

∴∠A3A1A2=60°,

∴∠A3A1P=A2A1M

A3A1=A2A1,A1A3P=A1A2P,

∴△A1A3P≌△A1A2M

PA3=MA2=PA2+PM=PA2+PA1

,是定值.

(2)延伸:如圖2,把(1)中條件等邊A1A2A3改為正方形A1A2A3A4”,其余條件不變,請問:還是定值嗎?為什么?

(3)拓展:如圖3,把(1)中條件等邊A1A2A3改為正五邊形A1A2A3A4A5”,其余條件不變,則=  (只寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了求的值,可采用下面的方法:

-①:,所以

1)請直接寫出:

2)請仿照上面的方法求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, BD ABC 的角平分線, AE BD ,垂足為 F ,若∠ABC35°,∠ C50°,則∠CDE 的度數(shù)為(

A.35°B.40°C.45°D.50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一農(nóng)民帶上若干千克自產(chǎn)的土豆進城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售,售出的土豆千克數(shù)與他手中持有的錢數(shù)(含備用零錢)的關系,如圖所示,結合圖象回答下列問題.

(1)農(nóng)民自帶的零錢是多少?

(2)試求降價前yx之間的關系式

(3)由表達式你能求出降價前每千克的土豆價格是多少?

(4)降價后他按每千克0.4元將剩余土豆售完,這時他手中的錢(含備用零錢)26,試問他一共帶了多少千克土豆?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在五邊形 ABCDE中,ABACADAE,且AB//ED,∠EAB120°,則∠DCB的度數(shù)是( )

A. 120°B. 130°C. 140°D. 150°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“十一”期間,小華一家人開車到距家100千米的景點旅游,出發(fā)前,汽車油箱內(nèi)儲油35升,當行駛80千米時,發(fā)現(xiàn)油箱余油量為25升(假設行駛過程中汽要車的耗油量是均勻的)

1)求該車平均每千米的耗油量;

2)寫出剩余油量Q(升)與行駛路程x(千米)之間的關系式;

3)當油箱中剩余油量低于3升時,汽車將自動報警,如果往返途中不加油,他們能否在汽車報警前回到家?請說明理由.

查看答案和解析>>

同步練習冊答案